
Why is eiπ = −1?

Copyright© Roger F. House, 2007

I �rst saw the equation eiπ = −1 in a popular book on mathematics
many years ago, probably sometime when I was in high school. In the book
it was written in the form

eiπ + 1 = 0

which allowed the author to say that the equation related �ve of the most
important constants in mathematics.

This statement intrigued me. The constants 1 and 0 were certainly very
familiar to me, and I felt more or less comfortable with π at least for things
like computing the area of a circle. I had some acquaintance with e. I knew
it was roughly 2.7 and that it was used as the base of the natural
logarithms. However, I had often wondered at the adjective �natural� in this
context because it was clear to me that logarithms to the base 10 were much
more natural. It seemed to me that it was much easier to work with a base
whose integer powers were nice values like 102 = 100 rather than e2 = some
messy irrational value. However, I was willing to take it on faith that e was
an important number and that one day I would know its true signi�cance.

The constant i, on the other hand, was quite a mystery to me. I knew
that it stood for the square root of -1, and I understood that it couldn't be
one of the numbers I was familiar with (which I learned later were called
real numbers) because all their squares were nonnegative. But if i was not a
real number, what was it? I could not really conceive of a number that did
not belong to the real numbers. I understood the reluctance of
mathematicians of earlier eras to deal with �numbers� like i. How did one
think about such things? Where did they �t into what I knew?

To compound my uncertainty as to what the equation eiπ = −1 really
meant, i and π appeared as exponents. In my mind cn for c a real number
and n a positive integer meant multiply c by itself n times. On rare
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occasion n might be a fraction rather than an integer, but this boiled down
to taking square roots and the like, so it didn't trouble me much. But what
did it mean to raise c to the power π? The best I could do with this was
reason that since π was between 3 and 4, then cπ was probably between c3

and c4. Using a table of logarithms (preferably to the base 10) I could even
compute cπ for given c, which impressed me to no end since I really didn't
quite understand what was going on.

But what to make of i as an exponent? This was surely beyond my
comprehension. Since i had no place in my universe of numbers, I could see
no way to think about raising some number to the power i. Thus, the
equation eiπ = −1 was really a complete mystery to me.

As my mathematical education progressed, the light slowly began to
dawn for me: The expression cx is in itself meaningless, just a couple of
letters of the alphabet positioned on the page in a certain way. Before it is
possible to talk about this expression, much less discuss its value, we must
de�ne the expression, i.e., we must state clearly in terms of what we
already know what this new notation represents.

Thus, for c a real number and x a positive integer, we de�ne cx to mean
c · c · · · c, where c appears x times, or, somewhat less precisely, cx is c
multiplied by itself x times. Now we have a clear statement of what cx

means in terms of things we already know (assuming we know about
multiplication of real numbers, the associativity of multiplication, etc.).

We can now prove facts about our new notation, e.g., cxcy = cx+y. This
is rather exciting; in some sense we are replacing multiplication by addition.

As we continue to work with this new idea, we may encounter c0. What
are we to make of this? After some thought we realize that c0 is unde�ned.
Our de�nition is for an exponent which is a positive integer, and zero is not
a positive integer. Thus the expression c0 is meaningless. We can't talk
about it or do anything with it.

Actually, we can do something with it: We can de�ne it to mean
something. In principle, we can de�ne it to mean anything we want, but if
we are not careful, our de�nition will not be very useful.

Taking a moment to think about what we are really up to, we see that
we are trying to extend an existing de�nition to a wider arena. We have a
de�nition for cx when x is a positive integer, and we want to extend this
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de�nition to apply when x is a nonnegative integer. With a bit more
thought we realize that if the new de�nition is to be useful, then we want
the important theorems we have proved about the existing de�nition to be
true for the new extended de�nition also.

In particular, we want cxcy = cx+y to remain true when either x or y is
zero. Thus, we want cxc0 = cx+0. But this means that cxc0 = cx, so, if c is
not zero, we can cancel cx on both sides to get c0 = 1. It certainly looks like
we should consider de�ning c0 = 1.

At �rst we may resist this tentative de�nition. If c2 = c · c and c1 = c,
shouldn't c0 = no c's at all? But what does this mean? Zero, perhaps? But
if we say that c0 = 0, then cxc0 = cx · 0 = 0, so cxc0 = cx+0 is no longer true.
In fact, we �nd that most of our interesting theorems about exponents are
no longer true.

But, if we use the de�nition c0 = 1, then the interesting theorems
remain true. In mathematics this is a very strong incentive to use the
de�nition. If we step back a bit and extract ourselves from the morass of
pondering what a product of no c's at all might mean, hopefully we'll recall
that we have complete freedom in de�ning what c0 means. So why not
de�ne it to mean what seems to be most fruitful and useful? If subsequent
work with the de�nition reveals that it is not so useful, well, then we can
change the de�nition. (In fact, we may be forced to change or re�ne the
de�nition; for example, what does 00 mean? Is it 1?)

Now that we've extended the de�nition of cx once, why not keep going?
In short order we can extend the de�nition to x any integer, x rational, and
x real. The step from x rational to x real is of a very di�erent nature than
the other steps. It involves such things as limits and sequences of an in�nite
number of terms. It is in the process of taking this step that we discover
why e is important and why it really is natural for e to be the base for
logarithms.

In the generalization of cx to wider and wider domains of x, we see the
same theme played out each step of the way: We want to de�ne cx in the
wider domain so that our existing theorems in the narrower domain are still
true in the new domain. This results in a paradox of sorts: In principle we
have complete freedom to de�ne things any way we want. But, if we want
our theorems to remain true in the new situation, we often have no freedom
whatsoever. Plugging the new domain into the old theorems reveals what
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the new de�nition must be. We either accept this and make the required
de�nition, or we must give up the theorems that have served us so well in
the narrower domain.

There are instances where we refuse to accept the de�nition forced upon
us by the old theorems. Quaternions are an example. Hamilton de�ned a
generalization of complex numbers in which he gave up commutativity of
multiplication, thus foregoing theorems such as ab = bc⇒ a = c for b 6= 0.
It turned out in this case that giving up some old theorems was worthwhile.
Hamilton started something that eventually became modern algebra and
modern vector analysis.

But in many cases the most fruitful thing to do is to accept the
de�nition forced upon us. This allows us to continue building a structure
upon what we have already built without tearing down existing
components.

We will illustrate this by an example, an investigation of how to extend
the function ex for real x to ez, where z is a complex number.

We want to �nd a function f(z) which maps complex numbers to
complex numbers, and which satis�es the following conditions:

A. f(x) = ex for all real x

B. f(z + w) = f(z)f(w) for all complex z and w

C. f ′(z) exists, i.e., f(z) is analytic

We certainly want condition A to hold because otherwise f(z) is not an
extension of ex. Condition B is the complex analog of the most important
property of ex, so we want it to be true also. Since ex is analytic for real x,
and since the theory of functions of a complex variable deals almost
exclusively with analytic functions, we want condition C to hold too.

We regard A, B, and C as a bare minimum. Any f(z) which has only
one or two of these properties will not do. On the other hand, we can hope
that we might �nd an f(z) which not only satis�es these conditions, but in
addition has the following properties:

D. f ′(z) = f(z)

E. f(z) is de�ned for all complex z

F. |f(z)| 6= 0 for all z, i.e., f(z) 6= 0
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Properties D and E are exact analogs of properties of ex. Since the complex
numbers are not ordered, property F is as close as we can get to ex > 0 for
all real x.

Now, how do we begin to �nd an f(z) with properties A, B, and C? One
traditional method is to ask a passing psychic. If we are lucky enough to
encounter the right psychic, we might be told to try

f(z) = ex(cos y + i sin y), (1)

where z = x+ iy. It is fairly easy to show that all six of our conditions are
met by this function. Thus, it not only ful�lls the essential conditions A, B,
and C, but it also has the hoped-for properties D, E, and F. So, we have
found an extension of ex to the complex plane.

However, our method leaves something to be desired. Often when one
needs them most, there are no psychics in the neighborhood. We would like
another approach, something that will show us how conditions A, B, and C
lead us inevitably to (1).

Following [Bak and Newman, p37], we begin with z = x+ iy and
consider f(z) = f(x+ iy). By condition B, f(x+ iy) = f(x)f(iy). By
condition A, f(x) = ex, so we have f(z) = exf(iy). We can write
f(iy) = A(y) + iB(y) for some functions A(y) and B(y) which map reals to
reals, so we end up with

f(z) = exA(y) + iexB(y) (2)

Letting u(x, y) = exA(y) and v(x, y) = exB(y), and taking partial
derivatives, we see that

ux = exA(y) vx = exB(y)

uy = exA′(y) vy = exB′(y)

Applying the Cauchy-Riemann equations (which are equivalent to our
condition C):

ux = vy ⇒ exA(y) = exB′(y)⇒ A(y) = B′(y) (3)

uy = −vx ⇒ exA′(y) = −exB(y)⇒ A′(y) = −B(y) (4)
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Di�erentiating the last equation in (4) we get A′′(y) = −B′(y), and using
the last equation in (3) this becomes A′′(y) = −A(y). All solutions of this
di�erential equation are given by

A(y) = a cos y + b sin y (5)

for a and b any real numbers. Since B(y) = −A′(y), we get

B(y) = −b cos y + a sin y (6)

Letting z = x, a real number, we see from (2) that

f(x) = exA(0) + iexB(0)

But f(x) = ex, so it must be that A(0) = 1 and B(0) = 0. Plugging y = 0
into (5) and (6), we get a = 1 and b = 0, so A(y) = cos y and B(y) = sin y.
Thus,

f(z) = ex(cos y + i sin y).

So, without the aid of a passing psychic, we see that conditions A, B, and C
force us to de�ne f(z) as in (1). Furthermore, the proof shows that this f(z)
is unique, i.e., the conditions are satis�ed by one and only one function.

It turns out that the f(z) we seek is fully determined by rather weaker
conditions than A, B, and C. The following theorem [p112 of Silverman] is
true:

There is a unique function f(z) [which turns out to be (1)] with
these properties:

A'. f(z) is de�ned for all complex z, f(x) is real for all real x,
and f(1) = e.

B'. f(z + w) = f(z)f(w) for all complex w, z.

C'. f(z) is di�erentiable at z = 0.

This is a surprising result. The function need only be di�erentiable at one
point, and it need match ex at only one point. The proof is rather long (4
pages) but it uses very elementary facts, little more than the
Cauchy-Riemann equations.
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Actually, an even more surprising fact is true: Condition B is not really
needed. Given that f(x) = ex for real x and f(x) is analytic, then f(z) is
fully determined. This can be seen by de�ning

f(z) = 1 + z + z2/2! + z3/3! + . . . ,

in analogy with the series for ex, using the fact that since f(z) and ex agree
on the real line, f(z) is the unique analytic continuation of ex to the entire
complex plane.

We can take yet another step: Let xn be a sequence of real numbers
containing an in�nite number of distinct points, and let L be a limit point
of the sequence. Then there is exactly one function f(z) analytic in the
complex plane such that f(xn) = exn and f(L) = eL. This function is (1).
This is quite amazing.

What is equally amazing is that, in a sense, from the moment we
de�ned cx for x a positive integer, we completely determined the sequence
of generalizations to x an integer, x rational, x real, and x complex. At
each step we had virtually no choice in de�ning cx in the new domain if we
wished to preserve the laws of exponents. This must be regarded as an
expression of the deep underlying unity of the number system, if not of
mathematics itself.

We conclude with

eiπ = e0+iπ = e0(cos π + i sin π) = 1(−1 + i · 0) = −1,

answering the question posed in the title of this essay.
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