
 VMAX: A VIRTUAL MACHINE FOR THE PCMAX2

 Version 2.00

 1990 July 16

 Roger House

 Everex

 Sebastopol R&D

 707-823-0733

1

 Table of Contents
 page

 Introduction .. 7

 Design Criteria 7

 VMAX Memory and Address Space 8

 Operand Types ... 10

 VMAX Registers .. 12
 General Registers 13
 Stack Pointer 13
 Frame Pointer 15
 Program Counter 18
 Flags Register 19

 Addressing Modes 21

 Instruction Formats 23
 General Considerations 23
 Overview of Formats 25
 The qr Format 27
 The r-operand 28
 The q-operand 29
 Notation for qr Operands 36
 Decoding the q-field 37
 The qc Format 39
 The qo Format 40
 The mr Format 41
 The ir Format 43
 The ij Format 44
 The i-operand 45
 The j-operand 46
 Notation for ij Operands 49
 The a3 Format 49
 The b1 Format 50
 The b14 Format 51
 The n0 Format 52
 The n04 Format 52

 Instruction Set Summary by Function 53
 Data Movement Instructions 53
 Move Instructions 53
 Store Instructions 54
 Load Address Instruction 55
 Flags Instructions 55
 Arithmetic Instructions 56
 Add Instructions 56
 Subtract Instructions 57
 Multipy Instructions 58

2

 Table of Contents (continued)
 page

 Divide Instructions 59
 Other Arithmetcic Instructions 63
 Shift Instructions 64
 Logical Instructions 65
 Convert Instructions 66
 Compare Instructions 69
 Jump Instructions 70
 Stack Instructions 72
 Miscellaneous Instructions 72

 Notation Summary 73

 Instruction Descriptions 76
 absd Absolute value of double 77
 absf Absolute value of float 77
 absl Absolute value of long 78
 absw Absolute value of word 78
 addcl Add long with carry 79
 addd Add double 79
 addf Add float 80
 addl Add long 80
 addswl Add signed word to long 81
 adduwl Add unsigned word to long 81
 addw Add word 82
 andl And long 82
 andw And word 83

 call Call 83
 callb Call backward 84
 callf Call forward 84
 cmpd Compare double 85
 cmpf Compare float 85
 cmpl Compare long 86
 cmplb Compare loworder byte of long to byte ... 86
 cmpw Compare word 87
 cmpwb Compare loworder byte of word to byte ... 87
 cvtbsl Convert byte sign-extended to long 88
 cvtbsw Convert byte sign-extended to word 88
 cvtbzl Convert byte zero-extended to long 89
 cvtbzw Convert byte zero-extended to word 89
 cvtdf Convert double to float 90
 cvtfd Convert float to double 90
 cvtsld Convert signed long to double 91
 cvtslf Convert signed long to float 91
 cvttdsl Convert truncated double to signed long . 92
 cvttdul Convert trunc. double to unsigned long .. 92
 cvttfsl Convert truncated float to signed long .. 93
 cvttful Convert trunc. float to unsigned long ... 93
 cvtuld Convert unsigned long to double 94
 cvtulf Convert unsigned long to float 94
 cvtwsl Convert word sign-extended to long 95

3

 Table of Contents (continued)
 page

 cvtwzl Convert word zero-extended to long 95
 divd Divide double 96
 divf Divide float 96
 divrsl Divide with remainder signed long 97
 divrslw Divide with rem. signed long by word 97
 divrsw Divide with remainder signed word 98
 divrul Divide with remainder unsigned long 98
 divrulw Divide with rem. unsigned long by word .. 99
 divruw Divide with remainder unsigned word 99
 divsl Divide signed long 100
 divsw Divide signed word 100
 divul Divide unsigned long 101
 divuw Divide unsigned word 101

 enter Enter function 102
 entersav Enter function and save registers 103

 gmov General move 104
 gsto General store 104

 halt Halt the VMAX machine 105

 jump Jump 105
 jumpb Jump backward 106
 jumpf Jump forward 106

 leal Load effective address 107
 leave Leave function 108
 leaveres Leave function and restore registers 109

 movbl Move byte to loworder byte of long 110
 movbw Move byte to loworder byte of word 110
 movd Move double 111
 movf Move float 111
 movflags Move word to flags register 112
 movl Move long 112
 movw Move word 113
 movwl Move word to loworder word of long 113
 muld Multiply double 114
 mulf Multiply float 114
 mulsl Multiply signed long 115
 mulsw Multiply signed word 115
 mulswl Multiply signed words yielding long 116
 mulul Multiply unsigned long 116
 muluw Multiply unsigned word 117
 muluwl Multiply unsigned words yielding long ... 117

 negd Negate double 118
 negf Negate float 118
 negl Negate long 119

4

 Table of Contents (continued)
 page

 negw Negate word 119
 nop No operation 120
 notl Not long 120
 notw Not word 121

 orl Or long 121
 orw Or word 122

 popd Pop double 122
 popf Pop float 123
 popl Pop long 123
 popregs Pop multiple registers 124
 popw Pop word 124
 pushd Push double 125
 pushf Push float 125
 pushl Push long 126
 pushregs Push multiple registers 126
 pushw Push word 127

 remsl Remainder signed long 127
 remsw Remainder signed word 128
 remul Remainder unsigned long 128
 remuw Remainder unsigned word 129
 ret Return from call 130
 rlil Rotate left immediate long 131
 rliw Rotate left immediate word 131
 rll Rotate left long 132
 rlw Rotate left word 132
 rril Rotate right immediate long 133
 rriw Rotate right immediate word 133
 rrl Rotate right long 134
 rrw Rotate right word 134

 set0l Store condition(0) into long 135
 set0w Store condition(0) into word 135
 set1l Store condition(1) into long 136
 set1w Store condition(1) into word 136
 slil Shift left immediate long 137
 sliw Shift left immediate word 137
 sll Shift left long 138
 slw Shift left word 138
 sqrtd Square root of double 139
 sqrtf Square root of float 139
 srail Shift right arithmetic immediate long ... 140
 sraiw Shift right arithmetic immediate word ... 140
 sral Shift right arithmetic long 141
 sraw Shift right arithmetic word 141
 srlil Shift right logical immediate long 142
 srliw Shift right logical immediate word 142
 srll Shift right logical long 143

5

 Table of Contents (continued)
 page

 srlw Shift right logical word 143
 stod Store double 144
 stof Store float 144
 stoflags Store flags register into word 145
 stol Store long 145
 stolb Store loworder byte of long into byte ... 146
 stolw Store loworder word of long into word ... 146
 stow Store word 147
 stowb Store loworder byte of word into byte ... 147
 subcl Subtract long with carry 148
 subd Subtract double 148
 subf Subtract float 149
 subl Subtract long 149
 subswl Subtract signed word from long 150
 subuwl Subtract unsigned word from long 150
 subw Subtract word 151

 xorl Exclusive or long 151
 xorw Exclusive or word 152

Appendix A: Instructions Grouped by Format 153

Appendix B: Instructions Grouped by Function 161

Appendix C: Instructions Ordered Alphabetically by Opcode 168

Appendix D: Differences Between VMAX v1.00 and v2.00 172

Appendix E: Ideas and Notes for Future Versions 177

Appendix F: Diagrams of Instruction Formats 181

6

 VMAX: A Virtual Machine for the PCMAX2

 Introduction

VMAX is one component of a system which will allow a programmer to compile
and execute C programs on a PCMAX2 board on a PC running DOS. This system
is based on a C compiler, GCC, which can be tailored to generate code for
most any 32-bit machine that addresses 8-bit bytes and has several general
registers.

Since the PCMAX2 has a rather small code space (the Writable Control Store
or WCS) and a rather small data space (the DataRam), it is not feasible to
tailor GCC to generate PCMAX2 microcode. Instead, GCC is tailored to gen-
erate code for a virtual computer, the VMAX, which is then executed on the
PCMAX2 by an interpreter which simulates the VMAX.

This document describes the architecture of VMAX: The address space, reg-
ister structure, instruction formats, and detailed actions of all instruc-
tions. The intention is that this document should provide a complete and
detailed description of VMAX which contains all the information needed for
a programmer to write a VMAX interpreter.

Although VMAX is a general-purpose computer which could be described inde-
pendently of both the PCMAX2 and GCC, it does not seem to be a good idea
to treat VMAX as if if exists in a vacuum. The only reason the VMAX com-
puter has been designed is so that GCC can be ported to the PCMAX2. Thus,
both GCC and the PCMAX2 are mentioned frequently in this document.

 Design Criteria

The design of the VMAX architecture was driven by two major requirements:

 1. The VMAX interpreter on the PCMAX2 must be efficient
 in terms of speed.

 2. It must be possible to describe VMAX to GCC so that
 GCC can generate reasonably good code for the machine.

Although considerable care was taken to satisfy these requirements, it is
anticipated that the definition of VMAX will be an iterative process. The
machine definition will undoubtedly change as experience is gained with
GCC and as the interpreter is developed.

7

 VMAX Memory and Address Space

The VMAX memory is organized as a flat 32-bit address space of up to 2^32
bytes. The first byte has address 0, and the last byte address 2^32-1.
Each byte can be addressed, so in the general case an address requires 32
bits (= 4 bytes). Data operands have no alignment requirements, e.g., a
2-byte word operand need not be word-aligned in memory. However, all in-
structions must be word-aligned (all instructions occupy an even number of
bytes).

VMAX programs generated by the C compiler organize the VMAX memory like
this:

 Address
 +-----------------------------+
 0 -------> | |
 | |
 | |
 | Code Space |
 | |
 | |
 | |
 +-----------------------------+
 | |
 | Data Space (C globals) |
 | |
 +-----------------------------+
 FSTFREE -> | Heap |
 | | |
 | | |
 | v |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | ^ |
 | | |
 | | |
 | Stack |
 +-----------------------------+
 MEMSIZE ->

It should be noted that there is nothing in the VMAX architecture itself
which forces the above memory organization (except, perhaps, the fact that
the VMAX stack grows from high addresses to low addresses). This organi-
zation is very convenient and efficient for programs generated from C

8

source code, but if one were to write programs directly in VMAX assembly
language, it would be possible to intermingle code, data, and the stack in
anyway the programmer desired.

The VMAX address space is mapped onto the PCMAX2 Vram: Address zero of
VMAX memory is address zero of Vram. Thus the Vram is the VMAX memory.

The VMAX stack begins at the highest available address of Vram and grows
downward towards lower addresses.

The VMAX interpreter can use PCMAX2 DataRam in a number of ways: All VMAX
registers might be stored in DataRam, or some of them might be stored in
PCMAX2 registers. Portions of VMAX memory might be cached in DataRam,
e.g., the memory near the current top of the stack, and the memory near
the current value of the program counter. However, these are all imple-
mentation issues, more or less independent of the definition of VMAX, so
no more will be said about them at this time.

One advantage of the mapping from VMAX memory to Vram is that VMAX execut-
able programs do not need to be relocated. They always load at byte zero
of Vram.

9

 Operand Types

VMAX instructions operate on 9 operand types. The following table lists
the types and their corresponding C declarations:

 VMAX data type Size (bytes) C declaration

 signed byte 1 signed char
 unsigned byte 1 unsigned char
 signed word 2 short
 unsigned word 2 unsigned short
 signed long 4 long
 unsigned long 4 unsigned long
 float 4 float
 double 8 double
 address 4 pointer to whatever

The float and double data types use the standard IEEE 754 formats for
single-and double-precision floating-point numbers. All other data types
are integer types which are stored in 2's complement form. VMAX is a
"little endian" machine, which means that the loworder bytes of a data
item are stored at lower addresses than the highorder bytes of the item.
In other words, the order of the bytes in memory is opposite to the order
in which numbers are usually written. As an example, consider these four
bytes stored at memory address A:

 ff ee dd cc
 | | | |
 stored at address A ------+ | | |
 stored at address A+1 ---------+ | |
 stored at address A+2 ------------+ |
 stored at address A+3 ---------------+

The following table shows how these bytes are interpreted when address A
appears in an instruction requiring an operand of a specific data type:

 operand type order in mem. usually written as value
 --
 signed byte ff ff -1
 unsigned byte ff ff +255
 signed word ffee eeff -4,353
 unsigned word ffee eeff +61,183
 signed long ffeeddcc ccddeeff -857,870,593
 unsigned long ffeeddcc ccddeeff +3,437,096,703

10

[Note: In this document, unless stated otherwise, numbers are written in
the usual order expected by humans, not in the little endian order in
which they are actually stored in memory.]

A data item representing an address is the same as an unsigned long. GCC
treats the C type "int" as a 32-bit integer, i.e., as a long. Thus there
is little mention of "int" in this document, because an "int" is always
a long.

As already mentioned, there are no alignment requirements for data oper-
ands. An operand may begin at any address in VMAX memory.

11

 VMAX Registers

Since GCC is very good at optimizing register usage, VMAX offers a fairly
large number of registers:

 general registers
 8 16-bit word registers: w0, w1, w2, w3, w4, w5, w6, w7
 8 32-bit long registers: L0, L1, L2, L3, L4, L5, L6, L7
 8 32-bit float registers: f0, f1, f2, f3, f4, f5, f6, f7
 8 64-bit double registers: d0, d1, d2, d3, d4, d5, d6, d7

 other registers
 1 32-bit program counter: pc
 1 16-bit flags register: flags
 LUF: less than unsigned flag
 LF: less than signed flag
 EF: equal flag
 GF: greater than signed flag
 GUF: greater than unsigned flag

The two long registers L6 and L7 are special in that some instructions use
them as implicit operands. Thus, these registers are usually denoted by
fp and sp:

 fp (= L6) is the frame pointer
 sp (= L7) is the stack pointer

The following diagram shows all the VMAX registers:

 +------+ +----------+ +----------+ +--------------------+
 0 | w0 | 8 | L0 | 16 | f0 | 24 | d0 |
 +------+ +----------+ +----------+ +--------------------+
 1 | w1 | 9 | L1 | 17 | f1 | 25 | d1 |
 +------+ +----------+ +----------+ +--------------------+
 2 | w2 | 10 | L2 | 18 | f2 | 26 | d2 |
 +------+ +----------+ +----------+ +--------------------+
 3 | w3 | 11 | L3 | 19 | f3 | 27 | d3 |
 +------+ +----------+ +----------+ +--------------------+
 4 | w4 | 12 | L4 | 20 | f4 | 28 | d4 |
 +------+ +----------+ +----------+ +--------------------+
 5 | w5 | 13 | L5 | 21 | f5 | 29 | d5 |
 +------+ +----------+ +----------+ +--------------------+
 6 | w6 | 14 | fp = L6 | 22 | f6 | 30 | d6 |
 +------+ +----------+ +----------+ +--------------------+
 7 | w7 | 15 | sp = L7 | 23 | f7 | 31 | d7 |
 +------+ +----------+ +----------+ +--------------------+

 +------+ +----------+
 |flags | | pc |
 +------+ +----------+

12

Note that all registers other than the flags and pc registers are numbered
from 0 through 31. This numbering is used in a few instructions which re-
ference registers of any type (most instructions only reference registers
of one type).

General Registers

The decision to provide several types of registers for VMAX was based pri-
marily on the fact that the PCMAX2 is a word machine (word = 2-bytes),
which means that operations on operands longer than a word are inherently
slower than operations on words. Thus, by providing word registers on the
VMAX, operations on C short integers will execute faster than operations
on long (4-byte) integers. Also, the new ANSI definition of C allows op-
erands of type float to be operated on with single-precision floating
point operations rather than double-precision operations. Thus, when the
extra precision of doubles is not needed, speed can be gained by using
floats.

VMAX has no byte registers as such. However, individual bytes can be
moved to and from the loworder bytes of word and long registers, so all
byte operations can be handled. For example, to implement A = B + C,
where all three variables are unsigned characters, this VMAX code can be
used:

 movbzw B w0 ; Move byte B zero-extended to word w0
 movbzw C w1 ; Move byte C zero-extended to word w1
 addw w1 w0 ; Add word w1 to w0
 stowb w0 A ; Store loworder byte of w0 into byte A

Stack Pointer

Since the primary aim of VMAX is to execute C programs, it is almost im-
perative that VMAX have a hardware stack. The stack pointer register is
an unsigned long register that contains the memory address of the top word
in the stack. (The stack grows from high addresses to low addresses, so
the "top" of the stack is at a lower address than other elements on the
stack.)

Push and pop operations handle variable-length data items, e.g., push
word, push long, push float, and push double. A word is the shortest item
that can be pushed or popped; there are no instructions to push or pop
single bytes.

As an example of how the stack pointer changes, consider this situation:

13

 | |
 | |
 | |
 +-------+ | |
 sp: | 100 | --+ 96 ----> | |
 +-------+ | 97 ----> | |
 | 98 ----> | |
 | 99 ----> | |
 +-> 100 ----> | Current top of stack: XX |
 | |
 | ^ |
 | | |
 | | |
 | Stack |
 | |

The stack pointer contains the value 100, which means that the current top
of the stack is at memory address 100. Now say that the instruction

 pushl 0xccddeeff

is executed to push a long value onto the stack. After this instruction
is executed, the stack looks like this:

 | |
 | |
 | |
 | |
 +-------+ | |
 sp: | 96 | -----> 96 ----> | New top of stack: ff |
 +-------+ 97 ----> | ee |
 98 ----> | dd |
 99 ----> | cc |
 100 ----> | XX |
 | |
 | ^ |
 | | |
 | | |
 | Stack |
 | |

The pushl operation decrements sp by 4 and moves 4 bytes to the address
contained in sp. The inverse operation, popl, fetches the 4 bytes starting
with the byte addressed by sp, and then increments sp by 4.

Note that the long value 0xccddeeff is pushed onto the stack with its low-
order byte at a lower address than its highorder byte. This is essential
to maintain the "little endian" order of operands in memory.

14

Since the VMAX has a flat 32-bit address space, there are no segment reg-
isters. In particular, there is no register containing the base of the
stack. The stack pointer is an absolute memory address, not an offset
relative to some base register. If it is conceptually helpful, the stack
can be considered to have a base address of zero.

Frame Pointer

A language like C can be implemented easily enough without a frame point-
er, provided that memory can be accessed relative to sp (which is not the
case for 80x86 processors). However, GCC seems to require a frame point-
er, so VMAX provides one, namely the fp register. This is a 32-bit un-
signed long register which usually contains a memory address (almost al-
ways the address of something on the stack). Addressing modes exist for
accessing operands relative to fp.

To illustrate the use of fp, consider the following C function prototype,
definition, and call:

 void F(short W, long L, double D);

 void F(short W, long L, double D)
 {
 short WA;
 long LA;

 . . .

 } /* end F */

 F(40, 50L, 60.0);

The call of F generates the following VMAX code:

 pushd 60.0 ; Push third parameter onto stack
 pushl 50 ; Push second parameter onto stack
 pushw 40 ; Push first parameter onto stack
 call F ; Call function F
 addl 14 sp ; Clear parameters from the stack

15

Note that the parameters in the call of F are pushed onto the stack in re-
verse order, so that the first parameter is at the top of the stack when F
is entered. The parameters occupy a total of 14 bytes on the stack (2 for
W, 4 for L, and 8 for D), so after the call, sp is incremented by 14 to
clear the parameters from the stack. These conventions are usual in C im-
plementations because a function may have a variable number of parameters.

When function F is entered, the stack looks like this:

 | |
 | |
 +-------+ | |
 sp: | | --+ | |
 +-------+ | | |
 | | |
 | | |
 | | |
 +-----------> | return address | 4 bytes
 sp+4 -> | W: 40 | 2 bytes
 sp+6 -> | L: 50 | 4 bytes
 sp+10 -> | D: 60 | 8 bytes
 | |
 | |

Here is the code generated for the definition of function F:

 F: pushl fp ; Save old fp on the stack
 movl sp fp ; Set fp to sp
 subl 6 sp ; Reserve stack space for locals
 . . .
 movl fp sp ; Clear locals from the stack
 popl fp ; Restore old fp
 ret ; Return to caller

After the subl instruction at the beginning of F is executed, the stack
looks like this:

 | |
 +-------+ | |
 sp: | | --+ | |
 +-------+ | | |
 +---> fp-6 -> | LA: y | 4 bytes
 +-------+ fp-2 -> | WA: x | 2 bytes
 fp: | | --------------> | old fp | 4 bytes
 +-------+ fp+4 -> | return address | 4 bytes
 fp+8 -> | W: 40 | 2 bytes
 fp+10 -> | L: 50 | 4 bytes
 fp+14 -> | D: 60 | 8 bytes
 | |
 | |

16

Now, all parameters and local variables of F can be accessed relative to
fp. Parameters are accessed with positive offsets, and locals are acces-
sed with negative offsets.

The code at the end of the function clears the local variables from the
stack (movl fp sp), restores the old fp (popl fp), and returns to the
caller (ret).

A few notes on the preceding:

 1. The function prologue and epilogue shown in the example above
 are not what are actually generated for VMAX. Instead the enter,
 entersav, leave, and leaveres instructions are used. These in-
 structions perform the same actions as shown in the example, but
 they require quite a bit fewer bytes of code.

 2. Traditional C required that all integer parameters shorter
 than int in a function call be promoted to int. Thus parameter W
 in the preceding example would be promoted to an int and pushed
 onto the stack as 4 bytes instead of as 2 bytes. Similarly, floats
 were promoted to doubles. However, ANSI C now allows shorts and
 floats to be passed as they are without promotion (if a proto-
 type for the function specifies the parameters as shorts and
 floats). The example shown assumes this new standard.

 3. Traditional C required that the code for every function be
 prepared to handle a variable number of arguments. This has chan-
 ged with ANSI C: If a function prototype does not explicitly in-
 dicate that the function takes a variable number of parameters,
 the compiler can assume that the function takes a fixed number of
 parameters of fixed types, namely those specified by the proto-
 type. This means that it is now possible for a function to clear
 its own parameters off the stack, instead of requiring the caller
 to do this. Although the example above shows the traditional C
 implementation, GCC will generate code for the new standard when
 appropriate.

[A note on sp and fp: In the preceding, it has been stated that sp and fp
are unsigned long registers. This is not quite correct. In the vast ma-
jority of cases sp and fp contain memory addresses, which are unsigned
longs. However, all instructions which operate on longs may have either
sp or fp as an operand, which means that these two registers are treated
like any other long registers. Thus, when it is useful, their contents
can be thought of as signed longs.]

GCC requires that, when necessary, a function preserve certain registers,
so part of the function prologue saves registers on the stack. Here is a
diagram showing a typical stack frame just after the function prologue has
been executed for a function with:

17

 3 arguments
 4 locals variables
 2 saved registers

 | | LOW ADDRESSES
 | | |
 +----------------------+ |
 SP ---------->| SAVED REG 2 | |
 +----------------------+ |
 | SAVED REG 1 | |
 +----------------------+ |
 | LOCAL 4 | |
 +----------------------+ |
 | LOCAL 3 | |
 +----------------------+ |
 | LOCAL 2 | |
 +----------------------+ |
 | LOCAL 1 | |
 +----------------------+ |
 FP ---------->| OLD FP | |
 +----------------------+ |
 | RETURN ADDRESS | |
 +----------------------+ |
 | ARG 1 | |
 +----------------------+ |
 | ARG 2 | |
 +----------------------+ |
 | ARG 3 | |
 +----------------------+ |
SP BEFORE CALL ---------->| | v
 | | HIGH ADDRESSES

Program Counter

The program counter register, pc, is an unsigned long register which al-
ways contains the memory address of the next instruction to execute. The
only way this register can be changed under program control is by jump,
call, leave, leaveres, and return instructions. Since instructions are
always word-aligned and consist of an even number of bytes, the value of
pc is always an even number. In addition, when a C program is interpreted,
pc must always point to an address in the Code Space (see a figure in an
earlier section).

18

Flags Register

The flags register is an unsigned word register whose highorder 11 bits
are always zero. The loworder five bits are used to flag various condi-
tions:

 4 3 2 1 0
 +--------+--------+--------+--------+--------+
 | | | | | |
 | LUF | LF | EF | GF | GUF |
 |< unsgn | < sgn | equal | > sgn |> unsgn |
 | | | | | |
 +--------+--------+--------+--------+--------+

Traditionally, computers tend to have a zero flag, a sign flag, an overflow
flag, and a carry flag, all of which are changed by many instructions. Be-
cause of the nature of the PCMAX2, it would be rather expensive in terms
of time to implement this style of flags. Thus, another approach has been
taken:

 1. The ONLY instructions which change the flags register
 are compare instructions.

 2. Floating point compares set exactly one of the LF, EF,
 or GF bits, and clear all the others.

 3. Integer compares work like this:

 If the operands are equal, EF is set and all
 other flags are cleared.

 If the operands are not equal, one of (LF, GF)
 and one of (LUF, GUF) are set, and all other
 flags are cleared.

Thus, after an integer compare, it is possible to determine the relation-
ship between the two operands as either signed quantities or unsigned
quantities.

This scheme makes it possible to avoid the overhead of setting flag bits
after most instructions. Only the compare instructions set the flags.
This fits in very well with the way GCC works: It handles conditional
branches using the model "compare and branch on the result of the compare".

Of course, the flags scheme described here is not really completely ade-
quate in general. For example, there are no provisions for checking for
overflow of arithmetic operations. This is not a problem for GCC because
the C language makes no provisions for overflow. However, for general
programming it is imperative that some sort of overflow checking be pro-
vided on some basis. This will be addressed in a future version of VMAX.

19

[At present VMAX has no control flags for floating point operations. The
IEEE 754 floating point standard requires a rather extensive set of con-
trol flags, exception flags, etc. These will be added as the VMAX floating
point package evolves. Note that we may end up with a flags register of
32 bits rather than 16 bits, or perhaps we will have two flags registers,
one for floating point and one for fixed point.]

20

 Addressing Modes

The typical VMAX instruction has two operands, one of which is almost al-
ways a register. The other operand is a general operand which can be any
of the following:

 register

 immediate operand

 memory address

 absolute address of the operand

 based addressing:
 base_register
 base_register + displacement

 indexed addressing:
 index_register
 index_register + displacement

 based and indexed addressing:
 base_register + index_register
 base_register + index_register + displacement

All long registers can be used as both base registers and index registers.
When indexing is used, the value of the index register can be scaled by
a factor of 1, 2, 4, or 8.

The displacements used in based, indexed, and based-indexed addressing
modes are of varying lengths. The following list shows the displacement
sizes available, and the notation commonly used for these addressing
modes:

 Based Addressing

 b base
 bd1 base + 1-byte-disp
 bd2 base + 2-byte-disp
 bd3 base + 3-byte-disp
 bd4 base + 4-byte-disp

21

 Indexed Addressing

 i index
 id1 index + 1-byte-disp
 id3 index + 3-byte-disp
 id4 index + 4-byte-disp

 Indexed Addressing

 bi base + index
 bid2 base + index + 2-byte-disp
 bid4 base + index + 4-byte-disp

22

 Instruction Formats

General Considerations

This section discusses the general characteristics of VMAX instructions,
as well as the reasons behind the overall design of the instruction for-
mats.

 Instruction length:
 All VMAX instructions occupy an even number of bytes; the
 possible lengths are 2, 4, 6, 8, and 10 bytes (the latter
 length only occurs when an instruction contains an 8-byte
 double as an immediate operand). The primary reason that
 instructions are an even number of bytes long is that the
 PCMAX2 Vram (where all VMAX instructions are stored) can
 only be accessed at the word level, not at the byte level.
 Thus, we increase interpretation speed by using a bit of
 space (some instructions could be one byte shorter if an
 odd number of bytes were allowed in an instruction).

 Separate opcode byte:
 The first byte of every instruction is an opcode; no other
 information is encoded in the first byte (although opcodes
 often imply operand type). Thus, the opcode byte can be
 used as an index to a jump table in the PCMAX2 DataRam which
 contains WCS addresses of routines for interpreting opcodes.
 At present about 145 VMAX opcodes have been defined, and it
 is anticipated that at most 40 more will be needed. This
 leaves at least 60 unused opcode values, which allows
 plenty of leeway for later optimization of the interpreter
 after experience shows what new instructions would speed
 up applications.

 Data types indicated by opcodes:
 Instead of encoding operand type information in the oper-
 and bytes of an instruction, each opcode operates on a
 specific data type. Thus, there are four add instructions:
 Add word, add long, add float, and add double. The format
 of the operand bytes in these four instructions is identi-
 cal (except for immediate operands) but the operand bytes
 describe different types of data depending on the opcode.
 In effect, type information is carried by the opcode, not
 by the operand bytes. This allows a more efficient encod-
 ing of information in an instruction (see the description
 of the qr instruction format below).

23

 Two-operand instructions:
 Most instructions have two operands, one of which is always
 a register. The other operand is general, i.e., a register,
 a memory reference, or an immediate operand. Care has been
 taken to insure that register-to-register instructions are
 of minimum length, i.e., 2 bytes. For most instructions,
 both operands have the same type, i.e., both are words, both
 are longs, etc. However, some instructions exist for con-
 verting one type to another, so, of necessity, the two
 operands are of different types.

 Uniformity:
 The instruction formats are fairly uniform, adhering to
 general schemes with few exceptions. This cuts down on the
 work needed to interpret the instructions.

[A note on notation: Examples of VMAX instructions in this document are
shown in a sort of pseudo assembly language, for example:

 movw B w5 ; Move contents of B to w5
 stow w5 A ; Store w5 into A

Mnemonics for opcodes reflect the actual opcode stored in memory, not what
might normally be written in assembly language. For example, in a real
assembly language, the single opcode sto might be used instead of stow,
stol, stof, and stod. The assembler can figure out which opcode to gener-
ate based on the types of the operands.]

24

Overview of Formats

The VMAX instruction formats are summarized in the following table:

 +--------++----------+-----------+-----------+---------------+
 | format || number | first | second | examples |
 | || operands | operand | operand | |
 +--------++----------+-----------+-----------+---------------+
 | qr || 2 | general | register | add, move |
 +--------++----------+-----------+-----------+---------------+
 | qc || 2 | general | cond. code| store cond. |
 +--------++----------+-----------+-----------+---------------+
 | qo || 1 | general | - | push, pop |
 +--------++----------+-----------+-----------+---------------+
 | mr || 2 | general | register | gmov, gsto |
 +--------++----------+-----------+-----------+---------------+
 | ir || 2 | imm. int | register | shift, rotate |
 +--------++----------+-----------+-----------+---------------+
 | ij || 2 | cond. code| jump adr | jump, call |
 +--------++----------+-----------+-----------+---------------+
 | a3 || 1 | 3-byte adr| - | jump, call |
 +--------++----------+-----------+-----------+---------------+
 | b1 || 1 | 1-byte int| - | ret |
 +--------++----------+-----------+-----------+---------------+
 | b14 || 2 | 1-byte int| 4-byte msk| entersav |
 +--------++----------+-----------+-----------+---------------+
 | n0 || 0 | - | - | halt, nop |
 +--------++----------+-----------+-----------+---------------+
 | n04 || 1 | 4-byte msk| - | pushregs |
 +--------++----------+-----------+-----------+---------------+

qr-format

 Most instructions have the qr-format, in which the q-operand
 is a general operand (a register, a memory reference, or an
 immediate value), and the r-operand is a register. The q-
 operand can involve based addressing, indexed addressing,
 or both.

qc-format
 This format is used by instructions which store a 0 or a 1
 depending on the condition codes. One operand is a general
 q-operand, and the other specifies a condition.

qo-format
 This is the "q-only" format, i.e., there is only one operand,
 which is a general q-operand. Push and pop instructions use
 this format.

25

mr-format
 This format is used by only two instructions: gmov and gsto. It
 includes all the addressing modes of the qr-format except immed-
 iate operands, and in addition allows data to be moved regardless
 of type (for example, 4 word registers can be moved to one double
 register).

ir-format
 In this format, one operand is an immediate 5-bit integer, and
 the other is a register. At present this format is used only
 by some shift and rotate instructions.

ij-format
 This format is used by all conditional jump instructions. One op-
 erand is a condition, and the other is an address to jump to.
 Several addressing modes are available for the address.

a3-format
 This format consists of a single operand, a 3-byte memory address.
 It is used by jump and call instructions.

b1-format
 There is one operand, a 1-byte integer. The enter, leave, and ret
 and instructions have this format.

b14-format
 This is the same as the b1-format except that in addition to the
 1-byte integer operand there is a 4-byte mask operand. The enter-
 sav and leaveres instructions have this format.

n0-format
 This is the simplest format there is: There are no operands, only
 an opcode. An example is nop.

n04-format
 There is one operand, a 4-byte mask. Only the pushregs and pop-
 regs instructions have this format.

Each instruction format is described in detail in the following sections.

26

The qr Format

The qr-format is the most widely used format in the VMAX instruction set.
It specifies two operands, a source and a destination, one of which is a
general operand, and the other of which is a register.

A qr-format instruction consists of an opcode, a qr-byte, and, for some
addressing modes, a sequence of q-bytes.

 1 byte 1 byte 0, 2, 4, 6, or 8 bytes
 +--------+---------+------------------+
 | | | |
 | opcode | qr-byte | q-bytes |
 | | | |
 +--------+---------+------------------+

The qr-byte consists of two fields, the q-field and the r-field:

 7 6 5 4 3 2 1 0
 +--------------------+------------+
 | | |
 | q-field | r-field |
 | (5 bits) | (3 bits) |
 | | |
 +--------------------+------------+

The q-field specifies the q-operand, a general operand, and the r-field
specifies the r-operand, which is always a register. With a few excep-
tions, the q-operand is the source operand, and the r-operand is the des-
tination operand. In some cases, e.g., the set of sto instructions which
store registers to memory, the r-operand is the source, and the q-operand
is the destination.

The sequence of q-bytes which may follow the qr-byte depends on the add-
ressing mode specified in the q-field. All cases are described in detail
in following sections.

Since the r-operand is simpler than the q-operand, it is described first.

27

The r-operand

The register specified by the r-operand is fully determined by two things:
The 3-bit integer in the r-field and the operand type implied by the op-
code. The following table shows the possible combinations:

 +---------+---------+-----------------------------------+
 | r-field | | operand type specified by opcode |
 | bit | decimal +--------+--------+--------+--------+
 | pattern | value | word | long | float | double |
 +---------+---------+--------+--------+--------+--------+
 | 000 | 0 | w0 | L0 | f0 | d0 |
 | 001 | 1 | w1 | L1 | f1 | d1 |
 | 010 | 2 | w2 | L2 | f2 | d2 |
 | 011 | 3 | w3 | L3 | f3 | d3 |
 | 100 | 4 | w4 | L4 | f4 | d4 |
 | 101 | 5 | w5 | L5 | f5 | d5 |
 | 110 | 6 | w6 | fp | f6 | d6 |
 | 111 | 7 | w7 | sp | f7 | d7 |
 +---------+---------+--------+--------+--------+--------+

As an example, consider this movl (move long) instruction:

 opcode q-field r-field
 +----------------+-----------------+
 | | | |
 | movl | 00:001 | 110 |
 | | | |
 +----------------+-----------------+

The operand type implied by the opcode is long, so the two registers ap-
pearing in the instruction are long registers. Thus the instruction moves
the contents of long register 1 to long register 6, i.e., from L1 to fp.

If the opcode is changed to movw (move word), then the registers appearing
in the instruction are word registers, so the instruction moves the con-
tents of word register 1 to word register 6, i.e., from w1 to w6.

Note that fp (the frame pointer) and sp (the stack pointer) are long reg-
isters. Thus, any instruction that operates on long operands can operate
on fp and sp.

28

The q-operand

The q-operand is more complex than the r-operand since it may be a regis-
ter, an immediate value, or a value in memory accessed via one of several
addressing modes. The following options are encoded in the q-field:

 7 6 5 4 3
 +-----------------------------+
 | 0 | 0 | qreg | reg: register
 +-----------------------------+
 | 0 | 1 | Lreg | b: base register
 +-----------------------------+
 | 1 | 0 | Lreg | bd2: base register + disp2
 +-----------------------------+
 | 1 | 1 | 0 | 0 | 0 | mema: memory address
 +-----------------------------+
 | 1 | 1 | ival | imm: immediate
 +-----------------------------+
 | 1 | 1 | 1 | 1 | 1 | regx: register extended addressing
 +-----------------------------+

The regx option indicates that there are bytes following the qr-byte which
specify the addressing mode. These bytes are described in detail in the
following pages.

Before describing each of the q-operand options, some discussion of ad-
dresses and values is appropriate.

A q-operand can be either a value or an address. For example, when memory
is moved to a register, the q-operand is a VALUE, namely, the contents of
a memory location. However, when a register is moved to memory, the q-op-
erand is an ADDRESS, namely, the address of the memory location where the
register is to be stored.

For the reg and imm q-operand options, the distinction between values and
addresses is not of great importance, because neither registers nor immed-
iate values have addresses (although by stretching things a bit we could
probably define some kind of addresses for them).

However, for all other q-operand options, the distinction between values
and addresses is important, because these kinds of q-operands are address-
ing modes. Thus, for each mode the "effective address" is described. For
an instruction which requires an address as a q-operand, the effective ad-
dress is the operand. For an instruction which requires a value as a q-
operand, the value stored at the effective address is the operand. The
notation EA will be used for "effective address".

Now that the distinction between addresses and values is clear, each of
the q-operand options are described in detail:

29

* reg: register: q-operand is register contents

 The 3-bit qreg field contains an integer which, when combined
 with the operand type, specifies a register. The encoding is
 exactly the same as for an r-operand register, as shown in the
 table for r-operands on a previous page.

* b: base register: q-operand EA is long register contents

 The 3-bit Lreg field contains an integer which specifies any
 one of the eight long registers, encoded exactly the same as
 for an r-operand register, as shown in the table for r-operands
 on a previous page.

 The contents of the specified long register is the effective
 address. As an example of the use of this addressing mode,
 consider the C statement *(P+1) = B, where B is a short and P
 is a pointer to short (both are globals). This can be imple-
 mented in VMAX as

 movl P L3
 addl 2 L3 ; L3 = P + 1
 movw B w0
 stow w0 [L3] ; *L3 = B

 Note that both sp and fp can be used in the Lreg field of the
 base register mode.

* bd2: base register + disp2: q-operand EA is long register contents
 plus a 2-byte displacement

 This is the same as the base register mode except that the
 qr-byte is followed by a signed 2-byte displacement which
 is added to the contents of the long register specified by
 Lreg to determine the effective address. Conceptually the
 displacement is sign-extended to a 4-byte signed value before
 it is added to the register. (Note: The register contents
 are NOT changed by this mode.)

 As an example, consider the following instruction which
 stores register w0 to memory. If L3 contains 10, then the
 instruction stores w0 into memory address 10+2 = 12.

30

 opcode qr-byte 2 bytes
 +-------+----------+------+
 | | | | |
 stow w0 [L3+2] | stow | bd2 | 0 | 0002 |
 | | L3 | | |
 +-------+----------+------+

* mema: memory address: q-operand EA is memory address in instruction

 The qr-byte is followed by a 4-byte unsigned long which is the
 effective address. As an example, the following instruction
 stores register w0 into memory location 65536:

 opcode qr-byte 4 bytes
 +-------+----------+----------+
 | | | | |
 stow w0 m65536 | stow | mema | 0 | 00010000 |
 | | | | |
 +-------+----------+----------+

* imm: immediate: q-operand is an immediate value

 The 3-bit ival field specifies the immediate value:
 001 (imm_1): -1
 010 (imm0): 0
 011 (imm1): +1
 100 (immv): The immediate value follows the qr-byte
 101 (imm2): 2-byte immediate value for long operands

 When the immediate value is one of the special values -1, 0, or
 +1, then there is no need to follow the qr-byte with the value.
 Thus, the instruction is only 2 bytes long instead of 4 or more
 bytes. However, the actual operand represented by imm_1, imm0,
 or imm1 depends on the operand type specified by the opcode:

 type imm_1 imm0 imm1

 byte: ff 00 01
 word: ffff 0000 0001
 long: ffffffff 00000000 00000001
 float: bf800000 00000000 3f800000
 double: bff0000000000000 0000000000000000 3ff0000000000000

31

 Similarly, in the immv case, the immediate value following the
 qr-byte depends on the operand type:

 type immediate operand format

 byte: 2-byte integer; highorder byte always zero
 word: 2-byte integer
 long: 4-byte integer
 float: 4-byte float
 double: 8-byte double

 Following are examples of immv, in which all types of the immed-
 iate value 3 are moved to registers. Note that the qr-bytes of
 all the instructions are identical, but the byte strings repre-
 senting the immediate values are different, depending on the op-
 erand type indicated by the opcode:

 opcode qr-byte 2 bytes
 +-------+----------+------+
 | | | | |
 movbw 3 w0 | movbw | immv | 0 | 0003 |
 | | | | |
 +-------+----------+------+

 opcode qr-byte 2 bytes
 +-------+----------+------+
 | | | | |
 movw 3 w0 | movw | immv | 0 | 0003 |
 | | | | |
 +-------+----------+------+

 opcode qr-byte 4 bytes
 +-------+----------+----------+
 | | | | |
 movl 3 L0 | movl | immv | 0 | 00000003 |
 | | | | |
 +-------+----------+----------+

 opcode qr-byte 4 bytes
 +-------+----------+----------+
 | | | | |
 movf 3 f0 | movf | immv | 0 | 40400000 |
 | | | | |
 +-------+----------+----------+

 opcode qr-byte 8 bytes
 +-------+----------+------------------+
 | | | | |
 movd 3 d0 | movd | immv | 0 | 4008000000000000 |
 | | | | |
 +-------+----------+------------------+

32

 The imm2 option can only be used with instructions that operate
 on long data. It indicates that the long immediate value follow-
 ing the qr-byte consists of only 2 bytes. Conceptually these 2
 bytes are sign-extended to a 4-byte immediate value. Here is an
 example of an instruction which moves the value 3 to long register
 L0:

 opcode qr-byte 2 bytes
 +-------+----------+------+
 | | | | |
 movl 3 L0 | movl | imm2 | 0 | 0003 |
 | | | | |
 +-------+----------+------+

 The imm2 option reduces the instruction length from 6 bytes to
 4 bytes for many long instructions which have an immediate value.

* regx: register extended addressing: q-operand specified by x-bytes

 The regx option is not really an addressing mode. It is an
 escape code that indicates that one or two x-bytes follow
 the qr-byte.

The x-bytes specify one of these addressing modes for the q-operand:

 i: index
 id1: index + disp1
 id3: index + disp3
 id4: index + disp4

 b: base
 bd1: base + disp1
 bd3: base + disp3
 bd4: base + disp4

 bi: base + index
 bid2: base + index + disp2
 bid4: base + index + disp4

The first byte following the qr-byte is the x1-byte. Bits 4 and 5 of the
x1-byte specify the major addressing mode:

 Bits Meaning Specified by
 --
 0x Index register only x1-byte
 10 Base register only x1-byte
 11 Both base and index registers x1- and x2-bytes

33

The exact bit encoding of each addressing mode is shown in the following
diagrams, where this notation is used:

 breg A 3-bit base register number (a long register)
 ireg A 3-bit index register number (a long register)
 s An 2-bit index scale factor
 00 = 1 (Note: Shifting the index reg.
 01 = 2 left by the number of bits in
 10 = 4 the s field is the same as mul-
 11 = 8 tiplying by the scale factor.)
 <0-byte> A byte consisting of all zero bits
 <dispN> An N-byte displacement

 Index Only: x1-byte

 7 6 5 4 3 2 1 0
 +------------------------+
 i: | 0 0 0 | s | ireg | <0-byte>
 +------------------------+
 id1: | 0 1 0 | s | ireg | <disp1>
 +------------------------+
 id3: | 1 0 0 | s | ireg | <disp3>
 +------------------------+
 id4: | 1 1 0 | s | ireg | <0-byte> <disp4>
 +------------------------+

 Base Only: x1-byte

 7 6 5 4 3 2 1 0
 +------------------------+
 b: | 0 0 1 0 0 | breg | <0-byte>
 +------------------------+
 bd1: | 0 1 1 0 0 | breg | <disp1>
 +------------------------+
 bd3: | 1 0 1 0 0 | breg | <disp3>
 +------------------------+
 bd4: | 1 1 1 0 0 | breg | <0-byte> <disp4>
 +------------------------+

 Base and Index: x1-byte x2-byte

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 +------------------------++------------------------+
 bi: | 0 0 1 1 0 | breg || 0 0 0 | s | ireg |
 +------------------------++------------------------+
 bid2: | 1 0 1 1 0 | breg || 0 0 0 | s | ireg | <disp2>
 +------------------------++------------------------+
 bid4: | 1 1 1 1 0 | breg || 0 0 0 | s | ireg | <disp4>
 +------------------------++------------------------+

34

Note that bits 6 and 7 of the x1-byte specify the displacement and/or 0-
byte filler needed for each addressing mode. In a sense, bits 6 and 7 are
a submode of the major mode specified by bits 4 and 5.

The way in which the effective address of the q-operand is determined for
the addressing modes above can be represented by this formula, where B is
the contents of the base register, I is the contents of the index register,
S is the scale factor, and D is the value of the displacement:

 B + S*I + sign-extend(D)

This formula works for all the addressing modes if we define B as zero
when there is no base register, I as zero when there is no index register,
and D as zero when there is no displacement. (Note: A displacement is
sign-extended to a 4-byte value before being used in an address calcula-
tion.)

[A note on unused bit patterns in the qr-format: The five bits of the
q-field can store 32 different bit patterns. At present all bit patterns
are used except for one:

 11110

The q-field never contains this bit pattern. Also, pattern 11101 (imm2)
can only appear in instructions which operate on long data. Numerous
bit patterns are not used in the two x-bytes. At some point the unused
bit patterns should be listed so that the interpreter can test for them
during error checking.]

35

Notation for qr Operands

In the description of a qr-format instruction, the following notation is
used to show what types of operands the instruction takes:

 q-field
 bvw byte value (word register)
 bvl byte value (long register)
 wv word value
 lv long value
 fv float value
 dv double value

 baw byte address (word register)
 bal byte address (long register)
 wa word address
 la long address
 fa float address
 da double address

 r-field
 wr word register
 lr long register
 fr float register
 dr double register

The r-field always specifies a register. The q-field, on the other hand,
specifies either a value or an address. When an address is required, it
means that the q-operand CANNOT be an immediate value. However, the q-
operand can be a register. In effect, when an address is required, it
means that the operand must be something in which values can be stored,
i.e., a memory location or a register, but not an immediate value.

Here are some examples:

 movl lv lr

The "move long" instruction requires a long VALUE as a q-operand (source),
and a long register as an r-operand (destination).

 stol lr la

The "store long" instruction requires a long ADDRESS as a q-operand (des-
tination), and a long register as an r-operand (source).

36

Decoding the q-field

Although the above list contains 12 specifiers for q-operands, the VMAX
interpreter does not need 12 different functions for decoding a q-operand.

For example, the process of determining an address is exactly the same for
all address specifiers, except when the "address" is a register. Also,
except for immediate values, the process of determining a value consists
of determining the address of the value, and then accessing the value at
the address.

Thus, except for the reg and imm options of a q-operand, the type of oper-
and (word, long, etc.) is not a factor in decoding the q-field. However,
for reg and imm options the operand type is critical. For example, the
bit pattern 000 stands for 4 different registers (w0, L0, f0, and d0) de-
pending on the type of opcode. Also, the format of an immediate operand
in an instruction depends on the opcode type.

The byte value and byte address specifiers (bvw, bvl, baw, and bal) re-
quire some discussion. The VMAX architecture is somewhat inconsistent
when it comes to byte operands. It is possible to address individual
bytes of memory and to move single bytes back and forth between memory and
registers, but there are no byte registers. Thus, the loworder bytes of
word and long registers are used as byte registers. This means that when
a byte value or a byte address specifier is used, it is necessary to indi-
cate whether the byte operand is in a word register or in a long register.
Thus the suffixes "w" and "l" are appended to bv and ba, resulting in the
specifiers bvw, bvl, baw, and bal.

It should be stressed that the "w" and "l" suffixes are only relevant for
the reg q-operand option, not for any other options. For example, con-
sider the description of the "move byte to loworder byte of word regis-
ter" instruction:

 movbw bvw wr

The q-operand is a byte value, and the r-operand is a word register. Thus,

 movbw [sp+2] w3

moves the single byte stored at memory address sp+2 to the loworder byte
of word register w3. The decoding of sp+2 does not depend on the fact
that the q-operand is a byte or that the byte will be placed in a word
register. However, in this instruction

 movbw w2 w3

the q-operand is a register, so the "w" suffix of bvw indicates that the
q-register is a word register, not a long register.

37

When the q-operand specifier is bvw or bvl, and the imm option is used,
the format of the immediate value is the same: A 2-byte integer with a
zero highorder byte. The "w" and "l" suffixes do not effect the format
of an immediate value. All byte immediate values have the same format.
For example, the following two instructions are bitwise identical except
for the opcode bytes:

 movbw 18 w0
 movbl 18 L0

[Note: The VMAX inconsistency regarding bytes imposes a bit of a restric-
tion on register-to-register moves of bytes: The source and destination
registers of the move must be of the same type. For example, if the des-
tination register is a word register, then the source register must also
be a word register, even though from a strictly logical point of view,
there is no reason why it shouldn't be possible for the source register to
be a long register.]

38

The qc Format

The qc-format instruction has exactly the same format as a qr-format in-
struction, except that the r-field is called the c-field, and it contains
a condition code instead of a register number. Actually, the c-field only
contains part of a condition code, namely, the loworder 3 bits of the
code. The highorder bit of the code is determined by the opcode. There
are only 4 instructions which use the qc-format, which is a special format
for converting conditions into the values 0 and 1. This is best described
by a discussion of two instructions:

 set0w Store condition(0) in word
 set1w Store condition(1) in word

The only difference between these two instructions is the way in which the
condition code is created: For set0w, the condition code is the c-field
with a zero bit appended at the beginning, and for set1w, the condition
code is the c-field with a one bit appended at the beginning. In both
cases, the result is a 4-bit condition code with a value in the range
[0, 15]. See the description of the i-operand of the ij-format in a later
section for all condition codes and what they mean.

The effect of set0w and set1w is simple: If the condition is TRUE, set
the destination word to the value 1, otherwise set it to the value 0. The
q-field describes the destination operand in exactly the same way as the
q-field of a qr-format instruction. The q-field must describe an address
(memory location or register); an immediate value is not allowed.

The other two instructions which have the qc-format are

 set0l Store condition(0) in long
 set1l Store condition(1) in long

The action of these instructions is exactly the same as set0w and set1w
except that the type of the destination operand is long.

39

The qo Format

The qo-format instruction has exactly the same format as a qr-format in-
struction, except that the r-field is not used (it is always 000). The
qo instructions are 1-operand instructions, most of which are push and pop
instructions. Here is an example of a qo instruction which pushes long
integer 2 onto the stack:

 opcode qo-byte 2 bytes
 +-------+----------+----------+
 | | | | |
 pushl 2 | pushl | imm2 | 0 | 0002 |
 | | | | |
 +-------+----------+----------+

The same operand specifiers used for the q-field of qr instructions are
used for the q-field of qo instructions. Some examples:

 pushl lv
 popd da

40

The mr Format

The mr-format is used by only two instructions, gmov (general move) and
gsto (general store). These instructions allow 1, 2, 4, or 8 bytes to be
moved from memory to any register (and vice versa), and from any register
type to any other register type.

An mr-format instruction consists of an opcode, an mr-byte, and a sequence
of m-bytes.

 1 byte 1 byte 2, 4, or 6 bytes
 +--------+---------+------------------+
 | | | |
 | opcode | mr-byte | m-bytes |
 | | | |
 +--------+---------+------------------+

The mr-byte consists of two fields, the m-field and the r-field:

 7 6 5 4 3 2 1 0
 +------------+--------------------+
 | | |
 | m-field | r-field |
 | (3 bits) | (3 bits) |
 | | |
 +------------+--------------------+

The m-field specifies the m-operand, a general operand (except that the
m-operand cannot be an immediate value), and the r-field specifies the
r-operand, which is always a register.

The sequence of m-bytes which may follow the mr-byte depends on the add-
ressing mode specified in the m-field. All cases are described in detail
in following sections.

The r-field contains a register number without regard to type. The 5-bits
of this field contain a value from 0 through 31, which indicates a register
as shown in the diagram in the General Registers section near the beginning
of this document. Thus, 0 indicates w0, 9 indicates L1, and 31 indicates
d7. Another way of looking at the r-field is to consider bits 3 and 4 as
type bits, and bits 0, 1, and 2 as a register number within a type. The
types are these:

 00 word
 01 long
 10 float
 11 double

41

The m-field consists of two subfields:

 7 6 5
 +---+-------+
 | | |
 | g | n |
 | | |
 +---+-------+

The n-field specifies the number of bytes to move, using these encodings:

 00 1
 01 2
 10 4
 11 8

The g-field indicates an addressing mode. If g = 0, then the mr-byte is
followed by a 4-byte memory address, which is the address to move to or
from (this is equivalent to the mema addressing mode of the qr-format).

If g = 1, then the mr-byte is followed by one or two x-bytes, just as for
the qr-format. Thus, all based, indexed, and based + indexed addressing
modes are available for mr-format instructions. In addition, for the mr-
format, the x-bytes can specify the following addressing mode (which is
not available in the x-bytes of the qr-mode):

 x1-byte x2-byte

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 +------------------------++------------------------+
 mreg: | 0 1 1 1 0 0 0 0 || 0 0 0 | mreg |
 +------------------------++------------------------+

The mreg is a 5-bit field specifying a register of any type, using the
register numbers shown in the General Registers section near the beginning
of this document. This addressing mode provides for register-to-register
operations in the mr-format.

The operand specifiers for mr instructions are these:

 gv general value
 ga general address
 gr general register

42

The ir Format

The ir-format instruction has exactly the same format as a qr-format
instruction, except that the q-field is a 5-bit integer instead of a gen-
eral q-operand specifier. The r-field specifies a register, as in the
qr-format. The integer in the i-field can be used for various purposes,
depending on the opcode, but the most common use of this field is for a
shift count in shift-immediate instructions. As an example, consider the
following instruction which shifts word register w7 left by 14 bits:

 opcode ir-byte
 +-------+----------+
 | | | |
 sliw 14 w7 | sliw | 14 | 7 |
 | | | |
 +-------+----------+

All ir instructions are 2-operand instructions in which one operand is a
5-bit integer and the other operand is a register.

The same operand specifiers used for the r-field of qr instructions are
used for the r-field of ir instructions. The specifiers used for the i-
field depend on the opcode; at present there is only one specifier:

 i-field
 sc shift count

An example of a description of a ir instruction:

 sliw sc wr

43

The ij Format

The ij-format is used for conditional and unconditional jumps and calls.
It specifies two operands, a condition and a memory address of an instruc-
tion. Any address in the VMAX address space can be specified with the ij-
format.

An ij-format instruction consists of an opcode, an ij-byte, and, for some
addressing modes, a sequence of j-bytes.

 1 byte 1 byte 0, 2, or 4 bytes
 +--------+---------+------------------+
 | | | |
 | opcode | ij-byte | j-bytes |
 | | | |
 +--------+---------+------------------+

The ij-byte consists of two fields, the i-field and the j-field:

 7 6 5 4 3 2 1 0
 +----------------+----------------+
 | | |
 | i-field | j-field |
 | (4 bits) | (4 bits) |
 | | |
 +----------------+----------------+

The i-field specifies a condition, and the j-field is an addressing mode
for determining the target address of the instruction. The sequence of j-
bytes which may follow the ij-byte depends on the addressing mode specified
in the j-field. The i-field, j-field, and j-bytes are described in detail
in the following sections.

44

The i-operand

The i-operand specifies a condition based on the bits in the flags
register:

+---------+---------+-----+--------------------------------+--------------+
| i-field | decimal |sym- | | |
| contents| value | bol | condition | expression |
+---------+---------+-----+--------------------------------+--------------+
0000	0	UNC	unconditional	TRUE		
0001	1	LEU	less than or equal unsigned	LUF=1		EF=1
0010	2	LU	less than unsigned	LUF=1		
0011	3	L	less than signed	LF=1		
0100	4	LE	less than or equal signed	LF=1		EF=1
0101	5	E	equal	EF=1		
0110	6	NE	not equal	EF=0		
0111	7	GE	greater than or equal signed	GF=1		EF=1
1000	8	G	greater than signed	GF=1		
1001	9	GU	greater than unsigned	GUF=1		
1010	10	GEU	greater than or equal unsigned	GUF=1		EF=1
1011	11		RESERVED			
1100	12		RESERVED			
1101	13		RESERVED			
1110	14		RESERVED			
1111	15		RESERVED			
+---------+---------+-----+--------------------------------+--------------+

When an ij instruction is executed, the result depends on the expression
in the rightmost column above. If the expression is FALSE, then the ij
instruction is equivalent to a NOP, i.e., control passes to the following
instruction.

If the expression is TRUE, then pc is changed to the memory address speci-
fied by the j-operand, i.e., a jump or a call is performed.

Note that at present only 11 bit patterns are defined for the i-field. No
bit patterns other than those shown above may appear in the i-field.

45

The j-operand

The j-operand is specified by one of these encodings in the j-field:

 3 2 1 0
 +-----------------------+
 | 0 | Lreg | jregi: register-indirect
 +-----------------------+
 | 1 | 0 | 0 | 0 | pcrp: pc-relative-plus
 +-----------------------+
 | 1 | 0 | 0 | 1 | pcrm: pc-relative-minus
 +-----------------------+
 | 1 | 0 | 1 | 0 | jmema: memory-address
 +-----------------------+
 | 1 | 0 | 1 | 1 | jmemai: memory-address-indirect
 +-----------------------+
 | 1 | 1 | 0 | 0 | sprmi: sp-relative-indirect
 +-----------------------+

Each of the above kinds of j-operands is described in the following pages.

* jregi: register-indirect: j-operand EA is long register contents

 The 3-bit Lreg field contains an integer which specifies one
 of the eight long registers. The contents of the specified
 long register is the effective address to jump to or to call.

* pcrp: pc-relative-plus: j-operand EA is pc contents plus an offset

 The ij-byte is followed by a 2-byte unsigned offset which is
 scaled by a factor of 2. If the i-field condition is satisfied,
 then pc is changed like this:

 pc = pc + 2*offset

 The offset is scaled so that the range of addresses reachable by
 this addressing mode is doubled. Since all instructions start at
 word boundaries, the loworder bit of an instruction address is al-
 ways 0, so there is no need to carry it. Thus, this addressing
 mode can be used to reach any instruction located at an address in
 the range pc + [0, 2^17-2 = 131,070].

 The C compiler generates jump instructions using the pcrp and pcrm
 modes, so the maximum safe size for a C function is 128KB. This
 should not be a restriction. Any C function which results in code
 of such a size is probably a logical mess which should be rewrit-

46

 ten anyway. (Note: One of the advantages of using pc-relative
 addresses for jump instructions is that such instructions do not
 need to be relocated.)

 At the point when pc is incremented, it addresses the byte follow-
 ing the current instruction. Thus, if the offset is zero, the ef-
 fect is the same as a NOP: Control passes to the next instruction
 just as if the jump condition were not satisfied.

 Here is an example of an unconditional jump to pc+8:

 opcode ij-byte 2 bytes
 +-------+-----------+------+
 | | | | |
 jump UNC pcrp 8 | jump | UNC |pcrp | 0008 |
 | | | | |
 +-------+-----------+------+

* pcrm: pc-relative-minus: j-operand EA is pc contents minus an offset

 This mode is exactly the same as pcrp except that the 2-byte un-
 signed offset is subtracted from pc:

 pc = pc - 2*offset

 This addressing mode can be used to reach any instruction located
 at an address in the range pc - [0, 2^17-2 = 131,070].

* jmema: memory-address: j-operand EA is memory address in instruction

 The ij-byte is followed by a 4-byte unsigned long which is the
 effective address. This address is placed in pc (without scaling)
 to transfer control. Note that any address in the VMAX address
 space can be reached with the jmema addressing mode.

 As an example, the following instruction jumps to address 65536:

 opcode ij-byte 4 bytes
 +-------+-----------+----------+
 | | | | |
 jump UNC m65536 | jump | UNC |mema | 00010000 |
 | | | | |
 +-------+-----------+----------+

47

* jmemai: memory-address-indirect: j-operand EA is memory address in
 instruction, indirect

 The ij-byte is followed by a 4-byte unsigned long which is the
 address of a memory location where the effective address is
 located. The effective address is moved to pc to transfer con-
 trol.

 As an example, if 00000004 is stored at memory address 65536, then
 the following instruction jumps to memory address 4:

 opcode ij-byte 4 bytes
 +-------+-----------+----------+
 | | | | |
 jump UNC [m65536] | jump | UNC |memai| 00010000 |
 | | | | |
 +-------+-----------+----------+

* sprmi: sp-relative-indirect: j-operand EA is in the stack

 The ij-byte is followed by a 2-byte unsigned offset which is
 scaled by a factor of 2. If the i-field condition is satisfied,
 then pc is changed like this:

 pc = [sp - 2 * offset]

 In other words, the long value located on the stack at address
 sp-2*offset is the address to jump to. This mode is similar to
 pcrm in that the ij-byte is followed by a 2-byte scaled offset.
 However, this offset is relative to sp rather than to pc, and
 a level of indirectness is involved.

 The sprmi mode is a bit ad hoc, but it turns out to be quite
 useful in the epilogue of a C function when the function pops
 its own arguments off the stack, and there are more than 510
 bytes of arguments (which means that leave, leaveres, and ret
 cannot be used to pop the arguments and return).

[Note: The bit patterns 1101, 1110, and 1111 are currently not used in
the j-field. Thus, up to 3 more addressing modes for jump and call in-
structions could be defined. Also, it is not clear if the jmemai mode is
really useful for code generated by a compiler. As experience is gained
with GCC and how it deals with jumps and calls, it may turn out that the
the j-field addressing modes should be reconsidered.]

48

Notation for ij Operands

In the description of an ij-format instruction, the notation used to show
what types of operands the instruction takes is very simple:

 i-field
 cc condition code

 j-field
 ma memory address

The a3 Format

The a3-format is used for unconditional jumps and calls. These instruc-
tions consist of an opcode and a 3-byte operand:

 1 byte 3 bytes
 +--------+------------------------+
 | | |
 | opcode | offset |
 | | |
 +--------+------------------------+

The operand is a 3-byte unsigned offset which is scaled by a factor of 2.
This offset is used to change pc like this:

 pc = pc +- 2*offset

Whether the offset is added or subtracted depends on the opcode (the fol-
lowing instructions are the only ones which have the a3 format):

 opcode instruction change to pc

 jumpf jump forward Add offset to pc
 callf call forward Add offset to pc

 jumpb jump backward Subtract offset from pc
 callb call backward Subtract offset from pc

49

A jump or call using the a3-format can reach a memory address as far away
as 2^25-2 = 33,554,430.

The C compiler generates call instructions using the a3-format, so the
maximum safe size for a compiled C program is 32MB. This should be big
enough for the near future. (Note: If a program gets too large, the com-
piler can be told to generate ij-format calls with the mema option. This
will increase the size of every call from a 4-byte instruction to a 6-byte
instruction, but then there are no limits at all except for the 4GB add-
ress space.)

One of the advantages of using the a3 format for calls is that no reloca-
tion is needed for these instructions.

At the point when pc is incremented or decremented, it addresses the byte
following the current instruction.

The specifier used in descriptions of a3 instructions is

 ma3 3-byte memory address

An example of a description of an a3 instruction:

 jumpf ma3

The b1 Format

The b1-format is used for instructions which require only a single byte as
an operand:

 1 byte 1 byte
 +--------+---------+
 | | |
 | opcode | operand |
 | | |
 +--------+---------+

The 1-byte operand is used for various purposes, depending on the opcode.
See the descriptions of the enter and ret instructions for examples.

The specifiers used in descriptions of b1 instructions depend on the op-
code; at present there is only one specifier:

 stkc stack change

50

An example of a description of a b1 instruction:

 ret stkc

The b14 Format

The b14-format is the same as the b1 format with an additional 4-byte
operand:

 1 byte 1 byte 4 bytes
 +--------+---------+------------------------+
 | | | |
 | opcode | operand | operand |
 | | | |
 +--------+---------+------------------------+

The two operands are used for various purposes, depending on the opcode.
See the descriptions of the entersav and leaveres instructions for
examples.

The specifiers used in descriptions of b14 instructions depend on the op-
code; at present only these specifiers are used:

 stkc stack change
 bmsk bit mask

An example of a description of a b14 instruction:

 entersav stkc bmsk

51

The n0 Format

The n0-format is used for instructions which have no operands at all:

 1 byte 1 byte
 +--------+----------+
 | | |
 | opcode | 00000000 |
 | | |
 +--------+----------+

Since an instruction must be an even number of bytes long, the opcode of
an n0-format instruction is followed by a single byte which is always
zero. Examples of n0-format instructions are nop and halt.

The n04 Format

The n04-format is the same as the n0 format with an additional 4-byte
operand:

 1 byte 1 byte 4 bytes
 +--------+----------+------------------------+
 | | | |
 | opcode | 00000000 | operand |
 | | | |
 +--------+----------+------------------------+

The operand is used for various purposes, depending on the opcode. See
the descriptions of the pushregs and popregs instructions for examples.

The specifiers used in descriptions of n04 instructions depend on the op-
code; at present only one specifiers is used:

 bmsk bit mask

An example of a description of a n04 instruction:

 popregs bmsk

52

 Instruction Set Summary by Function

Data Movement Instructions

Move Instructions

[Terminology: For VMAX instructions, "move" means move TO a register, and
"store" means store FROM a register (usually into memory).]

The following instructions move an operand (memory, immediate, or regis-
ter) to a register:

 movw Move word
 movl Move long
 movf Move float
 movd Move double

 movbw Move byte to loworder byte of word
 movbl Move byte to loworder byte of long

 movwl Move word to loworder word of long

 gmov General move

For movw, movl, movf, and movd, the source and destination operands are of
the same type. For movbw and movbl, the source operand is a byte, and the
destination operand is a word register (movbw) or a long register (movbl).
These move instructions change ONLY the loworder byte of the destination
register; the other bytes in the destination register are left unchanged.
The movwl instruction moves a word to a long register, changing ONLY the
loworder word of the long register.

The general move instruction, gmov, is provided to allow data of any type
to be moved to any type of register, using multiple registers if needed.
This instruction allows 1, 2, 4, or 8 bytes to be moved from any register
or from memory to any register. For example, a double register can be
moved to 4 word registers with gmov, or 8 bytes of memory can be moved to
2 long registers. The source operand of gmov cannot be an immediate
value.

[Note: GCC uses all the move instructions defined above. However, at the
moment GCC does not utilize the fact that movbw, movbl, and movwl leave
part of the destination register unchanged. It seems that GCC has the
capability to use this fact, but it is not yet clear how to tell GCC about
this. The gmov instruction was defined solely because GCC requires it.
However, it turns out that it is probably a convenient and useful instruc-
tion to have anyway.]

53

Store Instructions

[Terminology: For VMAX instructions, "move" means move TO a register, and
"store" means store FROM a register (usually into memory).]

The following instructions store a register into memory:

 stow Store word
 stol Store long
 stof Store float
 stod Store double

 stowb Store loworder byte of word into byte
 stolb Store loworder byte of long into byte

 stolw Store loworder word of long into word

 gsto General store

For stow, stol, stof, and stod, the source and destination operands are of
the same type. For stowb and stolb, the source operand is the loworder
byte of a word register (stowb) or a long register (stolb), and the desti-
nation is a single byte. These instructions change ONLY one byte. The
stolw instruction stores the loworder word of a long register into a word.

The general store instruction, gsto, is provided to allow any type of data
to be stored from any type of register into memory. This instruction al-
lows 1, 2, 4, or 8 bytes to be stored from any register (or group of con-
tiguous registers) into memory. For example, 2 word registers can be
stored into 4 bytes of memory with gsto, or 2 long registers can be stored
into 8 bytes of memory.

[Note: GCC uses all the store instructions defined above. The gsto in-
struction was defined solely because GCC requires it. However, it turns
out that it is probably a convenient and useful instruction to have
anyway.]

Note that sto instructions can be used to move from register to register.
However, this is usually done with a mov instruction rather than with a
sto instruction. [Perhaps we should not allow a sto instruction to be
used for register-to-register moves?]

54

Load Address Instruction

There is one instruction for loading an address into a register:

 leal Load effective address

This instruction computes the effective address of its operand and places
the effective address in a long register. It is also possible to use leal
to perform calculations on the contents of long registers. For example,
if L0 is referenced as a base register and L1 is referenced as an index
register, leal can be used to add the contents of L0 and L1 and place the
result in a third long register, say L2.

[Note: GCC uses the leal instruction.]

Flags Instruction

The following instructions load and store the flags register:

 movflags Move word to flags register
 stoflags Store flags register into word

 set0w Store condition(0) into word
 set1w Store condition(1) into word

 set0l Store condition(0) into long
 set1l Store condition(1) into long

The movflags instruction moves a 16-bit value into the flags register,
changing all the flags. The stoflags instruction stores the flags regis-
ter into a word. Thus, individual flag bits or groups of bits can be
changed by moving the flags register into a word register with stoflags,
changing bits of the word register, and then moving the word register to
the flags register with movflags.

The set instructions are used to store a 0 or a 1 into a word or a long,
depending on the condition codes.

[Note: GCC uses the set instructions, but it does not use movflags and
stoflags.]

55

Arithmetic Instructions

Add Instructions

The following instructions perform addition operations, producing a sum
from two addends:

 addw Add word
 addl Add long
 addf Add float
 addd Add double

 addcl Add long with carry

 adduwl Add unsigned word to long
 addswl Add signed word to long

For a given add instruction, the addends and sum are all of the same type
except for adduwl and addswl. For these two instructions the addends are
words, but the sum is long.

Note that addw can be used for both unsigned addition and signed addition.
The same is true of addl.

[Note: GCC uses all the add instructions defined above except for addcl,
adduwl, and addswl. These instructions can probably be used in a VMAX C
program via the asm feature which allows assembly language to be embedded
in C source code. Combining this with the in-line function capability of
GCC should make these instructions usable in a fairly reasonably way.]

56

Subtract Instructions

The following instructions perform subtraction operations, producing a
difference from two operands:

 subw Subtract word
 subl Subtract long
 subf Subtract float
 subd Subtract double

 subcl Subtract long with carry

 subuwl Subtract unsigned word from long
 subswl Subtract signed word from long

 negw Negate word
 negl Negate long
 negf Negate float
 negd Negate double

For a given subtraction instruction, the operands and difference are all
of the same type except for subuwl and subswl. For these two instructions
the operands are words, but the difference is long.

Note that subw can be used for both unsigned subtraction and signed sub-
traction. The same is true of subl.

The negate instructions perform arithmetic negation operations on their
operands. (The negate instructions are unary in one sense, but binary in
another: The negation of the source operand is placed in the destination
register. Thus, both a negation and a move are performed in the general
case.)

[Note: GCC uses all the subtraction instructions defined above except for
subcl, subuwl, and subswl. These instructions can probably be used via
asm and in-line functions, as discussed in the above section on add
instructions.]

57

Multiply Instructions

The following instructions perform multiplication operations generating a
product from a multiplier and a multiplicand:

 muluw Multiply unsigned word
 mulsw Multiply signed word

 mulul Multiply unsigned long
 mulsl Multiply signed long

 mulf Multiply float
 muld Multiply double

 muluwl Multiply unsigned words yielding long
 mulswl Multiply signed words yielding long

For a given multiply instruction, the multiplier, multiplicand, and pro-
duct are all of the same type except for muluwl and mulswl. For these two
instructions the multiplier and multiplicand are words, but the product
is long.

[Note: GCC uses all the multiply instructions defined above.]

58

Divide Instructions

The following instructions perform division operations, producing a quo-
tient, a remainder, or both:

 divuw Divide unsigned word
 divsw Divide signed word
 divul Divide unsigned long
 divsl Divide signed long
 divf Divide float
 divd Divide double

 remuw Remainder unsigned word
 remsw Remainder signed word
 remul Remainder unsigned long
 remsl Remainder signed long

 divruw Divide with remainder unsigned word
 divrsw Divide with remainder signed word
 divrul Divide with remainder unsigned long
 divrsl Divide with remainder signed long
 divrulw Divide with remainder unsigned long by word
 divrslw Divide with remainder signed long by word

The first group of instructions (div) produce only a quotient; no remain-
der is calculated. The second group of instructions (rem) produce only a
remainder; no quotient is calculated. The third group of instructions
(divr) produce both a quotient and a remainder. (Actually, divr instruc-
tions produce both a quotient and a remainder ONLY when the divisor is in
a register. If the divisor is not in a register, then no remainder is
produced.)

This table shows divide instructions grouped by operand type to make clear
which operations are available for which data types:

 operand types divide remainder both
 --
 unsigned word divuw remuw divruw
 signed word divsw remsw divrsw
 unsigned long divul remul divrul
 signed long divsl remsl divrsl
 unsigned long/word divrulw
 signed long/word divrslw
 float divf
 double divd

For a given divide instruction, the divisor, dividend, quotient, and re-
mainder are all of the same type except for divrulw and divrslw. For

59

these two instructions the divisor, quotient, and remainder are words,
but the dividend is long.

[Note: GCC uses all the divide instructions defined above except for
divrulw and divrslw, the instructions which divide a long by a word and
produce word results. GCC can use an instruction which divides an 8-byte
integer by a long, but it does not seem useful to have such an instruction
for VMAX, since VMAX does not support integers longer than 4 bytes. The
divrulw and divrslw instructions can probably be used via asm and in-
line functions, as discussed in the above section on add instructions.]

Since integer division of signed quantities can be defined in more than
one way, it is important to make clear just what VMAX integer division in-
structions do. We use the following notation:

 d - divisor (denominator)
 n - dividend (numerator)
 q - quotient
 r - remainder

Given inputs d and n, the VMAX divide instructions produce the unique q
and r which satisfy these relationships:

 Unsigned: n = d * q + r
 0 <= r < q

 Signed: n = d * q + r
 sgn(r) = sgn(n)
 0 <= |r| < |q|

Note that in signed division, if n is negative and r != 0, then r is nega-
tive. Thus, the remainder produced by a VMAX divide instruction is NOT
n mod d in the mathematical sense (because n mod d is usually defined to
be a nonnegative value). However, the mathematical mod function is rather
easily obtained from the remainder:

 if (r < 0) r += abs(d);

[Note: If we later want to add some VMAX instructions to compute the
mathematical mod, it might be a good idea to look at the Intel 80960MC.
This machine has separate instructions for remainder (as it is defined for
VMAX) and mod. The mod instructions produce a remainder with the same
sign as the divisor (instead of with the same sign as the dividend).]

This section concludes with detailed definitions and examples of unsigned
and signed division:

60

 Unsigned integer division:

 Input:
 There are two unsigned inputs:

 n is the dividend (numerator)
 d is the divisor (denominator)

 Output:
 If d = 0 then an exception is generated. Otherwise, there
 are two outputs:

 q is the quotient
 r is the remainder

 The outputs are the unique unsigned integers which satisfy
 the following:

 n = d * q + r
 0 <= r < q

 Notes:
 If n, d, q, and r are all the same type (i.e., consist of
 the same number of bits), then unsigned division can NEVER
 result in overflow.

 Examples:
 n / d q r d * q + r = n

 0 / 4 0 0 4 * 0 + 0 = 0
 1 / 4 0 1 4 * 0 + 1 = 1
 2 / 4 0 2 4 * 0 + 2 = 2
 3 / 4 0 3 4 * 0 + 3 = 3
 4 / 4 1 0 4 * 1 + 0 = 4
 5 / 4 1 1 4 * 1 + 1 = 5
 6 / 4 1 2 4 * 1 + 2 = 6
 7 / 4 1 3 4 * 1 + 3 = 7
 8 / 4 2 0 4 * 2 + 0 = 8

61

 Signed integer division:

 Input:
 There are two signed inputs:

 n is the dividend (numerator)
 d is the divisor (denominator)

 Output:
 If d = 0 then an exception is generated. Otherwise, there
 are two outputs:

 q is the quotient
 r is the remainder

 The outputs are the unique signed integers which satisfy
 the following:

 n = d * q + r
 sgn(r) = sgn(n)
 0 <= |r| < |q|

 Notes:
 If n and d are both nonnegative, then signed division pro-
 duces exactly the same outputs as unsigned division.

 If n, d, q, and r are all the same type (i.e., consist of
 the same number of bits), then signed division can occur
 in ONLY ONE case: n = smallest possible negative number,
 and q = -1. In this case, the quotient is the largest
 positive number + 1, which is too big to fit. For example,
 if the operands are 16 bits long, then -32768/-1 = +32768,
 and +32767 is the largest positive number that will fit in
 a 16-bit signed quantity.

 Examples:
 n / d q r d * q + r = n

 0 / -4 0 0 -4 * 0 + 0 = 0
 1 / -4 0 1 -4 * 0 + 1 = 1
 2 / -4 0 2 -4 * 0 + 2 = 2
 3 / -4 0 3 -4 * 0 + 3 = 3
 4 / -4 -1 0 -4 * -1 + 0 = 4
 5 / -4 -1 1 -4 * -1 + 1 = 5
 6 / -4 -1 2 -4 * -1 + 2 = 6
 7 / -4 -1 3 -4 * -1 + 3 = 7
 8 / -4 -2 0 -4 * -2 + 0 = 8

62

 -1 / 4 0 -1 4 * 0 + -1 = -1
 -2 / 4 0 -2 4 * 0 + -2 = -2
 -3 / 4 0 -3 4 * 0 + -3 = -3
 -4 / 4 -1 0 4 * -1 + 0 = -4
 -5 / 4 -1 -1 4 * -1 + -1 = -5
 -6 / 4 -1 -2 4 * -1 + -2 = -6
 -7 / 4 -1 -3 4 * -1 + -3 = -7
 -8 / 4 -2 0 4 * -2 + 0 = -8

 -1 / -4 0 -1 -4 * 0 + -1 = -1
 -2 / -4 0 -2 -4 * 0 + -2 = -2
 -3 / -4 0 -3 -4 * 0 + -3 = -3
 -4 / -4 1 0 -4 * 1 + 0 = -4
 -5 / -4 1 -1 -4 * 1 + -1 = -5
 -6 / -4 1 -2 -4 * 1 + -2 = -6
 -7 / -4 1 -3 -4 * 1 + -3 = -7
 -8 / -4 2 0 -4 * 2 + 0 = -8

Other Arithmetic Instructions

The following instructions take absolute values and square roots:

 absw Absolute value of word
 absl Absolute value of long
 absf Absolute value of float
 absd Absolute value of double

 sqrtf Square root of float
 sqrtd Square root of double

[Note: GCC uses all the instructions defined above.]

63

Shift Instructions

The following instructions perform shift and rotate operations:

 General shift instructions:

 slw Shift left word
 sll Shift left long

 srlw Shift right logical word
 srll Shift right logical long

 sraw Shift right arithmetic word
 sral Shift right arithmetic long

 Shift count is an immediate operand:

 sliw Shift left immediate word
 slil Shift left immediate long
 srliw Shift right logical immediate word
 srlil Shift right logical immediate long
 sraiw Shift right arithmetic immediate word
 srail Shift right arithmetic immediate long

 General rotate instructions:

 rlw Rotate left word
 rll Rotate left long

 rrw Rotate right word
 rrl Rotate right long

 Rotate count is an immediate operand:

 rliw Rotate left immediate word
 rlil Rotate left immediate long
 rriw Rotate right immediate word
 rril Rotate right immediate long

Only word registers and long registers can be shifted. There are three
different kinds of shifts:

 left shift to the left, fill with zero bit
 right logical shift to the right, fill with zero bit
 right arithmetic shift to the right, fill with sign bit

Each shift instruction comes in two forms: The shift count is a general

64

operand, or the shift count is an immediate value. The latter type of
shift instructions are shorter than the general shift instructions.

Rotate instructions are very similar to shift instructions, but bits
shifted out of one end of a register are shifted into the other end of
the register.

Logical Instructions

The following instructions perform logical operations:

 andw And word
 andl And long

 orw Or word
 orl Or long

 xorw Exclusive or word
 xorl Exclusive or long

 notw Not word
 notl Not long

The and, or, and xor instructions perform the usual bitwise logical opera-
tions on their two operands. The not instructions perform logical nega-
tion operations on their operands. (The not instructions are unary in one
sense, but binary in another: The negation of the source operand is
placed in the destination register. Thus, both a negation and a move are
performed, in the general case.)

[Note: GCC uses all the logical instructions defined above.]

65

Convert Instructions

The following instructions convert from one type of data to another type
of data:

 Byte -> Word

 cvtbzw Convert byte zero-extended to word
 cvtbsw Convert byte sign-extended to word

 Byte -> Long

 cvtbzl Convert byte zero-extended to long
 cvtbsl Convert byte sign-extended to long

 Word -> Long

 cvtwzl Convert word zero-extended to long
 cvtwsl Convert word sign-extended to long

 Long -> Float

 cvtulf Convert unsigned long to float
 cvtslf Convert signed long to float

 Long -> Double

 cvtuld Convert unsigned long to double
 cvtsld Convert signed long to double

 Float -> Long

 cvttful Convert truncated float to unsigned long
 cvttfsl Convert truncated float to signed long

 Double -> Long

 cvttdul Convert truncated double to unsigned long
 cvttdsl Convert truncated double to signed long

 Float <-> Double

 cvtdf Convert double to float
 cvtfd Convert float to double

66

It is important to note that cvttful, cvttfsl, cvttdul, and cvttdsl con-
vert from floating to integer by TRUNCATING TOWARD ZERO. This is exactly
what is wanted for C, but it does not conform to the IEEE 754 standard for
floating point operations, which defines a variety of rounding methods,
usually controlled by rounding control bits of a floating point control
word. Later we may want to define other floating -> integer conversion
instructions which take rounding control bits into account. This is done
on the Intel 80960MC: There are floating -> integer conversion instruc-
tions which ignore the rounding control bits, and there are floating ->
integer conversion instructions which use the rounding control bits.

Later it may also prove useful to provide an instruction which truncates a
floating value to a FLOATING integer. However, such an instruction does
not seem to be required by GCC, so for now we forget about it.

Although VMAX provides numerous conversion instructions, there is not one
instruction for every type of conversion required by C. For example,
there is no instruction to convert a word to a floating value. The table
on the following page shows how all possible C conversions can be imple-
mented with VMAX instructions. A single instruction suffices except when
integers other than longs are converted to floating, and vice versa. In
these cases, two VMAX instructions are needed. (Of course, if it proves
useful, we can later define other conversion instructions, e.g., word to
double.)

Some of the conversions shown in the following table may seem somewhat
peculiar. For example, if the value 0xff stored in a signed char is con-
verted to to an unsigned short, the result is 0xffff, i.e., the source
value is sign-extended to the size of the destination value. Since the
destination is an unsigned entity, it might seem that the converted value
should be 0x00ff. However, according to ANSI C, the correct thing to do
is to sign-extend. As best as could be determined, all conversions shown
in the table conform to ANSI C (and Microsoft C 5.1 and 6.0).

[Note: GCC uses all the conversion instructions defined above.]

67

 VMAX Instructions for C Type Conversions

+-------++-------+-------+-------+-------+-------+-------+-------+-------+
\									
\ to		UCHAR	SCHAR	UWORD	SWORD	ULONG	SLONG	FLOAT	DOUBLE
from \									
+-------++-------+-------+-------+-------+-------+-------+-------+-------+									
								cvtbzl	cvtbzl
UCHAR		X	SBP	cvtbzw	cvtbzw	cvtbzl	cvtbzl	cvtulf	cvtuld
+-------++-------+-------+-------+-------+-------+-------+-------+-------+									
								cvtbsl	cvtbsl
SCHAR		SBP	X	cvtbsw	cvtbsw	cvtbsl	cvtbsl	cvtslf	cvtsld
+-------++-------+-------+-------+-------+-------+-------+-------+-------+									
								cvtwzl	cvtwzl
UWORD		stowb	stowb	X	SBP	cvtwzl	cvtwzl	cvtulf	cvtuld
+-------++-------+-------+-------+-------+-------+-------+-------+-------+									
								cvtwsl	cvtwsl
SWORD		stowb	stowb	SBP	X	cvtwsl	cvtwsl	cvtslf	cvtsld
+-------++-------+-------+-------+-------+-------+-------+-------+-------+									
ULONG		stolb	stolb	stolw	stolw	X	SBP	cvtulf	cvtuld
+-------++-------+-------+-------+-------+-------+-------+-------+-------+									
SLONG		stolb	stolb	stolw	stolw	SBP	X	cvtslf	cvtsld
+-------++-------+-------+-------+-------+-------+-------+-------+-------+									
		cvttfsl	cvttfsl	cvttfsl	cvttfsl				
FLOAT		stolb	stolb	stolw	stolw	cvttful	cvttfsl	X	cvtfd
+-------++-------+-------+-------+-------+-------+-------+-------+-------+									
		cvttdsl	cvttdsl	cvttdsl	cvttdsl				
DOUBLE		stolb	stolb	stolw	stolw	cvttdul	cvttdsl	cvtdf	X
+-------++-------+-------+-------+-------+-------+-------+-------+-------+

 SBP: Same Bit Pattern X: No conversion needed

 VMAX type C type
 --
 UCHAR signed byte signed char
 SCHAR unsigned byte unsigned char
 UWORD unsigned word unsigned short
 SWORD signed word signed short
 ULONG unsigned long unsigned long
 SLONG signed long signed long
 FLOAT float float
 DOUBLE double float

68

Compare Instructions

The following instructions compare two operands:

 cmpw Compare word
 cmpl Compare long
 cmpf Compare float
 cmpd Compare double

 cmpwb Compare loworder byte of word to byte
 cmplb Compare loworder byte of long to byte

For all the compare instructions, the two operands to be compared are of
the same type. However, since VMAX has no byte registers, at least one
operand of a byte compare must be in either a word register or a long re-
gister. The cmpwb and cmplb instructions handle these two cases.

[Note: GCC uses all the compare instructions defined above.]

The floating point compare instructions cmpf and cmpd set a single flag
bit and clear the others. Only these three patterns are possible:

 LU L EQ G GU Examples

 0 0 0 1 0 compare 3.0 and -1.0
 0 0 1 0 0 compare 3.0 and 3.0
 0 1 0 0 0 compare 1.0 and 3.0

The fixed point compare instructions cmplb, cmpwb, cmpw, and cmpl set one
or two flag bits and clear the others. In concept, fixed point compare
instructions involve three steps:

 1. Clear all the flag bits to zero.

 2. Compare the operands as unsigned values and set a single bit.

 3. Compare the operands as signed values and set a single bit.

If the operands are equal (bit-for-bit the same), then steps 2 and 3 above
both set the EQ bit. Thus, only one bit of the five is set. However, if
the operands are not equal, then two of the five bits are set. Step 2
sets one of LTU or GTU, and step 3 sets one of LT or GT. Thus a total of
five patterns are possible:

69

 LU L EQ G GU Examples (bytes) Unsigned Signed
 --
 0 0 0 1 1 compare 0f and 01 15 and 1 15 and 1
 0 1 0 0 1 compare ff and 0f 255 and 15 -1 and 15
 1 0 0 1 0 compare 0f and ff 15 and 255 15 and -1
 0 0 1 0 0 compare ff and ff 255 and 255 -1 and -1
 1 1 0 0 0 compare 01 and 0f 1 and 15 1 and 15

When the patterns resulting from floating point compares are combined with
those resulting from fixed point compares, a total of seven distinct
patterns are possible:

 LU L EQ G GU Decimal value

 0 0 0 1 0 2
 0 0 0 1 1 3
 0 0 1 0 0 4
 0 1 0 0 0 8
 0 1 0 0 1 9
 1 0 0 1 0 18
 1 1 0 0 0 24

Jump Instructions

The following instructions jump and call functions, both conditionally and
unconditionally:

 call Call
 callb Call backward
 callf Call forward

 jump Jump
 jumpb Jump backward
 jumpf Jump forward

 ret Return from call
 leave Leave function
 leaveres Leave function and restore registers

Except for the fact that call instructions push the program counter onto
the stack, call and jump instructions behave in the same way, so in the
following only jump instructions are discussed.

70

The jump instruction either jumps or doesn't based on the condition bits
in the instruction and the current settings of the condition codes. The
following conditions can be tested for:

 UNC Unconditional
 LU Less than (unsigned)
 LEU Less than or equal (unsigned)
 L Less than
 LE Less than or equal
 EQ Equal
 NE Not equal
 GE Greater than or equal
 G Greater than
 GEU Greater than or equal (unsigned)
 GU Greater than (unsigned)

A jump instruction also specifies one of several jump adressing modes, as
described in an earlier section. One of the modes specifies a 4-byte ab-
solute address, so any instruction in a 4-gigabyte address space can be
reached with a jump instruction.

The jump forward and jump backward instructions are unconditional. These
instructions jump relative to the program counter with a range of 32MB.

The return instruction is used to exit a function and return to the
caller, possible clearing arguments from the stack. The leave instruction
is similar, but it does even more stack cleanup. The leaveres instruction
is the same as the leave instruction, but it restores registers saved in
the stack.

[Note: GCC uses all the instructions defined above.]

71

Stack Instructions

The following instructions operate on the stack:

 pushw Push word
 pushl Push long
 pushf Push float
 pushd Push double
 pushregs Push multiple registers

 popw Pop word
 popl Pop long
 popf Pop float
 popd Pop double
 popregs Pop multiple registers

 enter Enter function
 entersav Enter function and save registers

The push and pop instructions allow data of all types to be pushed onto
the stack and popped off the stack. The pushregs instruction allows any
subset of the 32 major VMAX registers to be pushed with one instruction;
popregs is the inverse function.

The enter and entersav instructions are used to handle common operations
required upon function entry. The entersav instruction performs the same
tasks as enter, and in addition it saves registers in the stack.

[Note: GCC uses all the instructions defined above.]

Miscellaneous Instructions

The following instructions do not fit in any other categories:

 halt Halt the VMAX machine
 nop No operation

[Note: Surprisingly enough, GCC uses nop: In certain instances when GCC
is not optimizing, a nop is generated as a convenient place to attach a
label that might be helpful when running a debugger on the compiled pro-
gram. GCC does not use the halt instruction.]

72

 Notation Sumary

Most of the notation used in the following instruction descriptions has
already been defined earlier in this document, but for ease of reference,
all the notation is summarized here in one place.

 qr instructions: q-operand r-operand

 q-operand is either a value or an address
 bvw byte value (word register)
 bvl byte value (long register)
 wv word value
 lv long value
 fv float value
 dv double value

 baw byte address (word register)
 bal byte address (long register)
 wa word address
 la long address
 fa float address
 da double address

 r-operand is always a register
 wr word register: w0, w1, w2, w3, w4, w5, w6, w7
 lr long register: L0, L1, L2, L3, L4, L5, L6, L7
 fr float register: f0, f1, f2, f3, f4, f5, f6, f7
 dr double register: d0, d1, d2, d3, d4, d5, d6, d7

 qc instructions: q-operand c-operand

 q-operand is same as for a qr instruction (a value or an address)

 c-operand is a condition code
 c0: cUNC, cLEU, cLU, cL, cLE, cE, cNE, cGE
 c1: cG, cGU, cGEU

 qo instructions: q-operand

 q-operand is same as for a qr instruction (a value or an address)

73

 mr instructions: m-operand r-operand

 m-operand is either a value or an address
 gv general value (immediate operand not allowed)
 ga general address

 r-operand is always a register
 gr general register (i.e., any register)

 ir instructions: i-operand r-operand

 i-operand is a 5-bit integer
 sc shift count

 r-operand is same as for a qr instruction (a register)

 ij instructions: i-operand j-operand

 i-operand is a condition code
 cc: cUNC, cLEU, cLU, cL, cLE, cE, cNE, cGE
 cG, cGU, cGEU

 j-operand is a memory address
 ma memory address

 a3 instructions: a3-operand

 a3-operand
 ma3 3-byte memory address

 b1 instructions: b1-operand

 b1-operand is a 1-byte integer
 stkc stack change

 b14 instructions: b1-operand b4-operand

 b1-operand is a 1-byte integer
 stkc stack change

 b4-operand is a 4-byte bit mask
 bmsk bit mask

74

 n0 instructions:

 no operands

 n04 instructions: n4-operand

 n4-operand is a 4-byte bit mask
 bmsk bit mask

Some miscellaneous notation:

 Synonyms for registers:
 fp: frame pointer (= L6)
 sp: stack pointer (= L7

 Registers other than general registers:
 pc: program counter
 flags: flags register
 LUF: less than unsigned flag
 LF: less than signed flag
 EF: equal flag
 GF: greater than signed flag
 GUF: greater than unsigned flag

 Bytes and words:
 lob: loworder byte of a word or a long
 hob: highorder byte of a word or a long
 low: loworder word of a long
 how: highorder word of a long

In all cases in which an opcode takes typed operands, the last letter of
the opcode indicates the type of the operands:

 b: byte
 w: word
 l: long
 f: float
 d: double

75

 Instruction Descriptions

The following pages contained detailed descriptions of all VMAX instruc-
tions, in alphabetical order by opcode name.

[Note: Each instruction description contains a "Flags" section, but at
present there is no discussion of how flags are set by the instructions.]

76

ABSD ABSF

absd - Absolute value of double
 Format: qr Flags:

Syntax: absd dv dr

Semantics: dr := (dv < 0 ? -dv : dv)

Description: The absolute value of double dv is stored in double regis-
 ter dr.

Flags:

Examples: absd d1 d1 ; d1 := abs(d1)
 absd d0 d1 ; d1 := abs(d0)
 absd [L1] d0 ; d0 := abs(double value
 addressed by L1)

absf - Absolute value of float
 Format: qr Flags:

Syntax: absf fv fr

Semantics: fr := (fv < 0 ? -fv : fv)

Description: The absolute value of float fv is stored in float regis-
 ter fr.

Flags:

Examples: absf f1 f1 ; f1 := abs(f1)
 absf f0 f1 ; f1 := abs(f0)
 absf [L1] f0 ; f0 := abs(float value
 addressed by L1)

77

ABSL ABSW

absl - Absolute value of long
 Format: qr Flags:

Syntax: absl lv lr

Semantics: lr := (lv < 0 ? -lv : lv)

Description: The absolute value of long lv is stored in long register
 lr.

Flags:

Examples: absl L1 L1 ; L1 := abs(L1)
 absl L0 L1 ; L1 := abs(L0)
 absl [L1] L0 ; L0 := abs(long value
 addressed by L1)

absw - Absolute value of word
 Format: qr Flags:

Syntax: absw wv wr

Semantics: wr := (wv < 0 ? -wv : wv)

Description: The absolute value of word wv is stored in word register
 wr.

Flags:

Examples: absw w1 w1 ; w1 := abs(w1)
 absw w0 w1 ; w1 := abs(w0)
 absw [L1] w0 ; w0 := abs(word value
 addressed by L1)

78

ADDCL ADDD

addcl - Add long with carry
 Format: qr Flags:

Syntax: addcl lv lr

Semantics: lr := lr + lv + carry bit

Description: Long value lv and the carry bit are added to long register
 lr. This instruction makes it possible to write multiple-
 precision arithmetic.

Flags: NOTE: The carry bit is not yet defined, so this instruc-
 tion is not yet available.

Examples: addcl L1 L1 ; L1 := L1 + L1 + carry bit
 addcl L0 L1 ; L1 := L1 + L0 + carry bit
 addcl [L1] L0 ; L0 := L0 + long value
 addressed by L1 + carry bit

addd - Add double
 Format: qr Flags:

Syntax: addd dv dr

Semantics: dr := dr + dv

Description: Double value dv is added to double register dr.

Flags:

Examples: addd d1 d1 ; d1 := d1 + d1
 addd d0 d1 ; d1 := d1 + d0
 addd [L1] d0 ; d0 := d0 + double value
 addressed by L1

79

ADDF ADDL

addf - Add float
 Format: qr Flags:

Syntax: addf fv fr

Semantics: fr := fr + fv

Description: Float value fv is added to float register fr.

Flags:

Examples: addf f1 f1 ; f1 := f1 + f1
 addf f0 f1 ; f1 := f1 + f0
 addf [L1] f0 ; f0 := f0 + float value
 addressed by L1

addl - Add long
 Format: qr Flags:

Syntax: addl lv lr

Semantics: lr := lr + lv

Description: Long value lv is added to long register lr.

Flags:

Examples: addl L1 L1 ; L1 := L1 + L1
 addl L0 L1 ; L1 := L1 + L0
 addl [L1] L0 ; L0 := L0 + long value
 addressed by L1

80

ADDSWL ADDUWL

addswl - Add signed word to long
 Format: qr Flags:

Syntax: addswl wv lr

Semantics: lr := lr + sign-extend(wv)

Description: Word value wv is sign-extended to 32 bits, and then added
 to long register lr.

Flags:

Examples: addswl w1 L1 ; L1 := L1 + sign-extend(w1)
 addswl w0 L1 ; L1 := L1 + sign-extend(w0)
 addswl [L1] L0 ; L0 := L0 + sign-extend(word value
 addressed by L1)

adduwl - Add unsigned word to long
 Format: qr Flags:

Syntax: adduwl wv lr

Semantics: lr := lr + zero-extend(wv)

Description: Word value wv is zero-extended to 32 bits, and then added
 to long register lr.

Flags:

Examples: adduwl w1 L1 ; L1 := L1 + zero-extend(w1)
 adduwl w0 L1 ; L1 := L1 + zero-extend(w0)
 adduwl [L1] L0 ; L0 := L0 + zero-extend(word value
 addressed by L1)

81

ADDW ANDL

addw - Add word
 Format: qr Flags:

Syntax: addw wv wr

Semantics: wr := wr + wv

Description: Word value wv is added to word register wv.

Flags:

Examples: addw w1 w1 ; w1 := w1 + w1
 addw w0 w1 ; w1 := w1 + w0
 addw [L1] w0 ; w0 := w0 + word value
 addressed by L1

andl - And long
 Format: qr Flags:

Syntax: andl lv lr

Semantics: lr := lr & lv

Description: Long value lv is bitwise and-ed to long register lr.

Flags:

Examples: andl L1 L1 ; L1 := L1 & L1
 andl L0 L1 ; L1 := L1 & L0
 andl [L1] L0 ; L0 := L0 & long value
 addressed by L1

82

ANDW CALL

andw - And word
 Format: qr Flags:

Syntax: andw wv wr

Semantics: wr := wr & wv

Description: Word value wv is bitwise and-ed to word register wr.

Flags:

Examples: andw w1 w1 ; w1 := w1 & w1
 andw w0 w1 ; w1 := w1 & w0
 andw [L1] w0 ; w0 := w0 & word value
 addressed by L1

call - Call
 Format: ij Flags:

Syntax: call cc ma

Semantics: if (cc) call EA(ma)

Description: If the condition indicated by condition code cc is TRUE,
 then call the routine at the effective address specified
 by ma. The return address is pushed onto the stack:

 sp := sp - 4
 Store pc at address contained in sp
 pc := EA(ma)

Flags:

Examples: call cUNC ReadOne ; Unconditionally call ReadOne
 call cG Sort ; if (GF == 1) call Sort
 call cNE [L1] ; if (EF == 0) call routine whose
 address is in L1

83

CALLB CALLF

callb - Call backward
 Format: a3 Flags:

Syntax: callb ma3

Semantics: call EA(ma3)

Description: Call the routine at the effective address specified
 by ma3. The return address is pushed onto the stack:

 sp := sp - 4
 Store pc at address contained in sp
 pc := pc - 2*ma3

Flags:

Examples: callb ReadOne ; Call ReadOne
 callb Sort ; Call Sort

callf - Call forward
 Format: a3 Flags:

Syntax: callf ma3

Semantics: call EA(ma3)

Description: Call the routine at the effective address specified
 by ma3. The return address is pushed onto the stack:

 sp := sp - 4
 Store pc at address contained in sp
 pc := pc + 2*ma3

Flags:

Examples: callf ReadOne ; Call ReadOne
 callf Sort ; Call Sort

84

CMPD CMPF

cmpd - Compare double
 Format: qr Flags:

Syntax: cmpd dv dr

Semantics: Set flags as if dr - dv were executed

Description: Double value dv is subtracted from double register dr, and
 the flags register is set accordingly. The dr register is
 NOT changed.

Flags:

Examples: cmpd d1 d0 ; Compare d1 with d0
 cmpd [sp+2] d1 ; Compare double at sp+2 with d1
 cmpd [L1] d0 ; Compare double value addressed
 by L1 with d0

cmpf - Compare float
 Format: qr Flags:

Syntax: cmpf fv fr

Semantics: Set flags as if fr - fv were executed

Description: Float value fv is subtracted from float register fr, and
 the flags register is set accordingly. The fr register is
 NOT changed.

Flags:

Examples: cmpf f1 f0 ; Compare f1 with f0
 cmpf [sp+2] f1 ; Compare float at sp+2 with f1
 cmpf [L1] f0 ; Compare float value addressed
 by L1 with f0

85

CMPL CMPLB

cmpl - Compare long
 Format: qr Flags:

Syntax: cmpl lv lr

Semantics: Set flags as if lr - lv were executed

Description: Long value lv is subtracted from long register lr, and
 the flags register is set accordingly. The lr register is
 NOT changed.

Flags:

Examples: cmpl L1 L0 ; Compare L1 with L0
 cmpl [sp+2] L1 ; Compare long at sp+2 with L1
 cmpl [L1] L0 ; Compare long value addressed
 by L1 with L0

cmplb - Compare loworder byte of long to byte
 Format: qr Flags:

Syntax: cmplb bvl lr

Semantics: Set flags as if lob(lr) - bvl were executed

Description: Byte value bvl is subtracted from the loworder byte of
 long register lr, and the flags register is set according-
 ly. The lr register is NOT changed.

Flags:

Examples: cmplb L1 L2 ; Compare lob(L1) with lob(L2)
 cmplb [sp+2] L1 ; Compare byte at sp+2 with lob(L1)
 cmplb [L1] L0 ; Compare byte value addressed by
 L1 with lob(L0)

86

CMPW CMPWB

cmpw - Compare word
 Format: qr Flags:

Syntax: cmpw wv wr

Semantics: Set flags as if wr - wv were executed

Description: Word value wv is subtracted from word register wr, and
 the flags register is set accordingly. The wr register is
 NOT changed.

Flags:

Examples: cmpw w1 w0 ; Compare w1 with w0
 cmpw [sp+2] w1 ; Compare word at sp+2 with w1
 cmpw [L1] w0 ; Compare word value addressed
 by L1 with w0

cmpwb - Compare loworder byte of word to byte
 Format: qr Flags:

Syntax: cmpwb bvw wr

Semantics: Set flags as if lob(wr) - bvw were executed

Description: Byte value bvw is subtracted from the loworder byte of
 word register wr, and the flags register is set according-
 ly. The wr register is NOT changed.

Flags:

Examples: cmpwb w1 w2 ; Compare lob(w1) with lob(w2)
 cmpwb [sp+2] w1 ; Compare byte at sp+2 with lob(w1)
 cmpwb [L1] w0 ; Compare byte value addressed by
 L1 with lob(w0)

87

CVTBSL CVTBSW

cvtbsl - Convert byte sign-extended to long
 Format: qr Flags:

Syntax: cvtbsl bvl lr

Semantics: lob(lr) := bvl
 the three highorder bytes of lr := sign bit of bvl

Description: Byte value bvl is moved to the loworder byte of long reg-
 ister lr, and the sign of bvl is extended to fill the
 three highorder bytes of lr. Thus, the three highorder
 bytes of lr are either all zero bits or else all one bits.

Flags:

Examples: cvtbsl L1 L0 ; Move lob(L1) sign-extended to L0
 cvtbsl [sp+2] L1 ; Move byte at sp+2 sign-ext to L1
 cvtbsl [L1] L0 ; Move byte addressed by L1 sign-
 extended to L0

cvtbsw - Convert byte sign-extended to word
 Format: qr Flags:

Syntax: cvtbsw bvw wr

Semantics: lob(wr) := bvw
 hob(wr) := sign bit of bvw

Description: Byte value bvw is moved to the loworder byte of word reg-
 ister wr, and the sign of bvw is extended to fill the
 highorder byte of wr. Thus, the highorder byte of wr is
 either all zero bits or else all one bits.

Flags:

Examples: cvtbsw w1 w0 ; Move lob(w1) sign-extended to w0
 cvtbsw [sp+2] w1 ; Move byte at sp+2 sign-ext to w1
 cvtbsw [L1] w0 ; Move byte addressed by L1 sign-
 extended to w0

88

CVTBZL CVTBZW

cvtbzl - Convert byte zero-extended to long
 Format: qr Flags:

Syntax: cvtbzl bvl lr

Semantics: lob(lr) := bvl
 the three highorder bytes of lr := 0

Description: Byte value bvl is moved to the loworder byte of long reg-
 ister lr, and the three highorder bytes of lr are set to
 zero.

Flags:

Examples: cvtbzl L1 L0 ; Move lob(L1) zero-extended to L0
 cvtbzl [sp+2] L1 ; Move byte at sp+2 zero-ext to L1
 cvtbzl [L1] L0 ; Move byte addressed by L1 zero-
 extended to L0

cvtbzw - Convert byte zero-extended to word
 Format: qr Flags:

Syntax: cvtbzw bvw wr

Semantics: lob(wr) := bvw
 hob(wr) := 0

Description: Byte value bvw is moved to the loworder byte of word reg-
 ister wr, and the highorder byte of wr is set to zero.

Flags:

Examples: cvtbzw w1 w0 ; Move lob(w1) zero-extended to w0
 cvtbzw [sp+2] w1 ; Move byte at sp+2 zero-ext to w1
 cvtbzw [L1] w0 ; Move byte addressed by L1 zero-
 extended to w0

89

CVTDF CVTFD

cvtdf - Convert double to float
 Format: qr Flags:

Syntax: cvtdf dv fr

Semantics: fr := (float) dv

Description: Double value dv is converted to float and stored in float
 register fr.

 QUESTION: What loss of precision, etc., can happen??

Flags:

Examples: cvtdf d1 f0 ; f0 := (float) d1
 cvtdf [sp+2] f1 ; f1 := (float) (double at sp+2)
 cvtdf [L1] f0 ; f0 := (float) (double addressed
 by L1)

cvtfd - Convert float to double
 Format: qr Flags:

Syntax: cvtfd fv dr

Semantics: dr := (double) fv

Description: Float value fv is converted to double and stored in double
 register dr.

Flags:

Examples: cvtfd f1 d0 ; d0 := (double) f1
 cvtfd [sp+2] d1 ; d1 := (double) (float at sp+2)
 cvtfd [L1] d0 ; d0 := (double) (float addressed
 by L1)

90

CVTSLD CVTSLF

cvtsld - Convert signed long to double
 Format: qr Flags:

Syntax: cvtsld lv dr

Semantics: dr := (double) lv

Description: Signed long value lv is converted to double and stored in
 double register dr.

 QUESTION: What about loss of precision?

Flags:

Examples: cvtsld L1 d0 ; d0 := (double) L1
 cvtsld [sp+2] d1 ; d1 := (double) (long at sp+2)
 cvtsld [L1] d0 ; d0 := (double) (long addressed
 by L1)

cvtslf - Convert signed long to float
 Format: qr Flags:

Syntax: cvtslf lv fr

Semantics: fr := (float) lv

Description: Signed long value lv is converted to float and stored in
 float register fr.

 QUESTION: What about loss of precision?

Flags:

Examples: cvtslf L1 f0 ; f0 := (float) L1
 cvtslf [sp+2] f1 ; f1 := (float) (long at sp+2)
 cvtslf [L1] f0 ; f0 := (float) (long addressed
 by L1)

91

CVTTDSL CVTTDUL

cvttdsl - Convert truncated double to signed long
 Format: qr Flags:

Syntax: cvttdsl dv lr

Semantics: lr := (long) dv

Description: Double value dv is converted to a signed long and stored
 in long register lr.

 QUESTION: What loss of precision, etc., can happen??

Flags:

Examples: cvttdsl d1 L0 ; L0 := (long) d1
 cvttdsl [sp+2] L1 ; L1 := (long) (double at sp+2)
 cvttdsl [L1] L0 ; L0 := (long) (double addressed
 by L1)

cvttdul - Convert truncated double to unsigned long
 Format: qr Flags:

Syntax: cvttdul dv lr

Semantics: lr := (unsigned long) dv

Description: Double value dv is converted to an unsigned long and stored
 in long register lr.

 QUESTION: What loss of precision, etc., can happen??

Flags:

Examples: cvttdul d1 L0 ; L0 := (unsigned long) d1
 cvttdul [sp+2] L1 ; L1 := (unsigned long) (double
 at sp+2)
 cvttdul [L1] L0 ; L0 := (unsigned long) (double
 addressed by L1)

92

CVTTFSL CVTTFUL

cvttfsl - Convert truncated float to signed long
 Format: qr Flags:

Syntax: cvttfsl fv lr

Semantics: lr := (long) fv

Description: Float value fv is converted to a signed long and stored
 in long register lr.

 QUESTION: What loss of precision, etc., can happen??

Flags:

Examples: cvttfsl f1 L0 ; L0 := (long) f1
 cvttfsl [sp+2] L1 ; L1 := (long) (float at sp+2)
 cvttfsl [L1] L0 ; L0 := (long) (float addressed
 by L1)

cvttful - Convert truncated float to unsigned long
 Format: qr Flags:

Syntax: cvttful fv lr

Semantics: lr := (unsigned long) fv

Description: Float value fv is converted to an unsigned long and stored
 in long register lr.

 QUESTION: What loss of precision, etc., can happen??

Flags:

Examples: cvttful f1 L0 ; L0 := (unsigned long) f1
 cvttful [sp+2] L1 ; L1 := (unsigned long) (float
 at sp+2)
 cvttful [L1] L0 ; L0 := (unsigned long) (float
 addressed by L1)

93

CVTULD CVTULF

cvtuld - Convert unsigned long to double
 Format: qr Flags:

Syntax: cvtuld lv dr

Semantics: dr := (double) lv

Description: Unsigned long value lv is converted to double and stored in
 double register dr.

 QUESTION: What about loss of precision?

Flags:

Examples: cvtuld L1 d0 ; d0 := (double) L1
 cvtuld [sp+2] d1 ; d1 := (double) (long at sp+2)
 cvtuld [L1] d0 ; d0 := (double) (long addressed
 by L1)

cvtulf - Convert unsigned long to float
 Format: qr Flags:

Syntax: cvtulf lv fr

Semantics: fr := (float) lv

Description: Unsigned long value lv is converted to float and stored in
 float register fr.

 QUESTION: What about loss of precision?

Flags:

Examples: cvtulf L1 f0 ; f0 := (float) L1
 cvtulf [sp+2] f1 ; f1 := (float) (long at sp+2)
 cvtulf [L1] f0 ; f0 := (float) (long addressed
 by L1)

94

CVTWSL CVTWZL

cvtwsl - Convert word sign-extended to long
 Format: qr Flags:

Syntax: cvtwsl wv lr

Semantics: low(lr) := wv
 how(lr) := sign bit of wv

Description: Word value wv is moved to the loworder word of long regis-
 ter lr, and the sign of wv is extended to fill the high-
 order word of lr. Thus, the highorder word of lr is
 either all zero bits or else all one bits.

Flags:

Examples: cvtwsl w1 L0 ; Move w1 sign-extended to L0
 cvtwsl [sp+2] L1 ; Move word at sp+2 sign-ext to L1
 cvtwsl [L1] L0 ; Move word addressed by L1 sign-
 extended to L0

cvtwzl - Convert word zero-extended to long
 Format: qr Flags:

Syntax: cvtwzl wv lr

Semantics: low(lr) := wv
 how(lr) := 0

Description: Word value wv is moved to the loworder word of long regis-
 ter lr, and the highorder word of lr is set to zero.

Flags:

Examples: cvtwzl w1 L0 ; Move w1 zero-extended to L0
 cvtwzl [sp+2] L1 ; Move word at sp+2 zero-ext to L1
 cvtwzl [L1] L0 ; Move word addressed by L1 zero-
 extended to L0

95

DIVD DIVF

divd - Divide double
 Format: qr Flags:

Syntax: divd dv dr

Semantics: dr := dr / dv

Description: Double register dr is divided by double value dv, and the
 quotient is placed in dr.

Flags:

Examples: divd d1 d1 ; d1 := d1 / d1
 divd d0 d1 ; d1 := d1 / d0
 divd [L1] d0 ; d0 := d0 / double value
 addressed by L1

divf - Divide float
 Format: qr Flags:

Syntax: divf fv fr

Semantics: fr := fr / fv

Description: Float register fr is divided by float value fv, and the
 quotient is placed in fr..

Flags:

Examples: divf f1 f1 ; f1 := f1 / f1
 divf f0 f1 ; f1 := f1 / f0
 divf [L1] f0 ; f0 := f0 / float value
 addressed by L1

96

DIVRSL DIVRSLW

divrsl - Divide with remainder signed long
 Format: qr Flags:

Syntax: divrsl lv lr

Semantics: lr := lr / lv
 lv := remainder (if lv is a register)

Description: Long register lr is divided by long value lv, and the quo-
 tient is placed in lr.. If lv is a register, then lv is
 set to the remainder of the division (so the original di-
 visor is overwritten). If lv is not a register then no
 remainder is produced by the operation. All quantities
 are treated as SIGNED integers.

Flags:

Examples: divrsl L2 L1 ; L1 := L1 / L2; L2 := remainder
 divrsl [sp+2] L1 ; L1 := L1 / long at sp+2; no rmdr
 divrsl [L1] L0 ; L0 := L0 / long value addressed
 by L1 (no remainder)

divrslw - Divide with remainder signed long by word
 Format: qr Flags:

Syntax: divrslw wv lr

Semantics: lr := lr / wv
 wv := remainder (if wv is a register)

Description: Long register lr is divided by word value wv, and the quo-
 tient is placed in lr.. If wv is a register, then wv is
 set to the remainder of the division (so the original di-
 visor is overwritten). If wv is not a register then no
 remainder is produced by the operation. All quantities
 are treated as SIGNED integers.

Flags:

Examples: divrslw w2 L1 ; L1 := L1 / w2; w2 := remainder
 divrslw [sp+2] L1 ; L1 := L1 / word at sp+2; no rmdr
 divrslw [L1] L0 ; L0 := L0 / word value addressed
 by L1 (no remainder)

97

DIVRSW DIVRUL

divrsw - Divide with remainder signed word
 Format: qr Flags:

Syntax: divrsw wv wr

Semantics: wr := wr / wv
 wv := remainder (if wv is a register)

Description: Word register wr is divided by word value wv, and the quo-
 tient is placed in wr.. If wv is a register, then wv is
 set to the remainder of the division (so the original di-
 visor is overwritten). If wv is not a register then no
 remainder is produced by the operation. All quantities
 are treated as SIGNED integers.

Flags:

Examples: divrsw w2 w1 ; w1 := w1 / w2; w2 := remainder
 divrsw [sp+2] w1 ; w1 := w1 / word at sp+2; no rmdr
 divrsw [L1] w0 ; w0 := w0 / word value addressed
 by L1 (no remainder)

divrul - Divide with remainder unsigned long
 Format: qr Flags:

Syntax: divrul lv lr

Semantics: lr := lr / lv
 lv := remainder (if lv is a register)

Description: Long register lr is divided by long value lv, and the quo-
 tient is placed in lr.. If lv is a register, then lv is
 set to the remainder of the division (so the original di-
 visor is overwritten). If lv is not a register then no
 remainder is produced by the operation. All quantities
 are treated as UNSIGNED integers.

Flags:

Examples: divrul L2 L1 ; L1 := L1 / L2; L2 := remainder
 divrul [sp+2] L1 ; L1 := L1 / long at sp+2; no rmdr
 divrul [L1] L0 ; L0 := L0 / long value addressed
 by L1 (no remainder)

98

DIVRULW DIVRUW

divrulw - Divide with remainder unsigned long by word
 Format: qr Flags:

Syntax: divrulw wv lr

Semantics: lr := lr / wv
 wv := remainder (if wv is a register)

Description: Long register lr is divided by word value wv, and the quo-
 tient is placed in lr.. If wv is a register, then wv is
 set to the remainder of the division (so the original di-
 visor is overwritten). If wv is not a register then no
 remainder is produced by the operation. All quantities
 are treated as UNSIGNED integers.

Flags:

Examples: divrulw w2 L1 ; L1 := L1 / w2; w2 := remainder
 divrulw [sp+2] L1 ; L1 := L1 / word at sp+2; no rmdr
 divrulw [L1] L0 ; L0 := L0 / word value addressed
 by L1 (no remainder)

divruw - Divide with remainder unsigned word
 Format: qr Flags:

Syntax: divruw wv wr

Semantics: wr := wr / wv
 wv := remainder (if wv is a register)

Description: Word register wr is divided by word value wv, and the quo-
 tient is placed in wr.. If wv is a register, then wv is
 set to the remainder of the division (so the original di-
 visor is overwritten). If wv is not a register then no
 remainder is produced by the operation. All quantities
 are treated as UNSIGNED integers.

Flags:

Examples: divruw w2 w1 ; w1 := w1 / w2; w2 := remainder
 divruw [sp+2] w1 ; w1 := w1 / word at sp+2; no rmdr
 divruw [L1] w0 ; w0 := w0 / word value addressed
 by L1 (no remainder)

99

DIVSL DIVSW

divsl - Divide signed long
 Format: qr Flags:

Syntax: divsl lv lr

Semantics: lr := lr / lv

Description: Long register lr is divided by long value lv, and the quo-
 tient is placed in lr.. No remainder is calculated. All
 quantities are treated as SIGNED integers.

Flags:

Examples: divsl L2 L1 ; L1 := L1 / L2
 divsl [sp+2] L1 ; L1 := L1 / long at sp+2
 divsl [L1] L0 ; L0 := L0 / long value addressed
 by L1

divsw - Divide signed word
 Format: qr Flags:

Syntax: divsw wv wr

Semantics: wr := wr / wv

Description: Word register wr is divided by word value wv, and the quo-
 tient is placed in wr.. No remainder is calculated. All
 quantities are treated as SIGNED integers.

Flags:

Examples: divsw w2 w1 ; w1 := w1 / w2
 divsw [sp+2] w1 ; w1 := w1 / word at sp+2
 divsw [L1] w0 ; w0 := w0 / word value addressed
 by L1

100

DIVUL DIVUW

divul - Divide unsigned long
 Format: qr Flags:

Syntax: divul lv lr

Semantics: lr := lr / lv

Description: Long register lr is divided by long value lv, and the quo-
 tient is placed in lr.. No remainder is calculated. All
 quantities are treated as UNSIGNED integers.

Flags:

Examples: divul L2 L1 ; L1 := L1 / L2
 divul [sp+2] L1 ; L1 := L1 / long at sp+2
 divul [L1] L0 ; L0 := L0 / long value addressed
 by L1

divuw - Divide unsigned word
 Format: qr Flags:

Syntax: divuw wv wr

Semantics: wr := wr / wv

Description: Word register wr is divided by word value wv, and the quo-
 tient is placed in wr.. No remainder is calculated. All
 quantities are treated as UNSIGNED integers.

Flags:

Examples: divuw w2 w1 ; w1 := w1 / w2
 divuw [sp+2] w1 ; w1 := w1 / word at sp+2
 divuw [L1] w0 ; w0 := w0 / word value addressed
 by L1

101

ENTER ENTER

enter - Enter function
 Format: b1 Flags:

Syntax: enter stkc

Semantics: sp := sp - 4
 Move contents of fp to address contained in sp
 fp := sp
 sp := sp - 2*stkc

Description: This instruction is used as the first instruction in a
 routine generated from a C function definition. Its ef-
 fect is exactly equivalent to the action of these three
 instructions:

 pushl fp
 movl sp fp
 subl 2*stkc sp

 Typically, 2*stkc is the number of bytes needed by local
 automatic variables of the function. Note that stkc is
 an unsigned quantity, scaled by a factor of 2 (because the
 smallest entity that can be pushed or popped is a word).
 Thus, at most 510 bytes can be reserved on the stack for
 local variables by the enter instruction. If more are
 needed, this is easily handled by generating an addl in-
 struction. For example, say that a function requires 528
 bytes for locals. Then the first two instructions in the
 function are

 enter 510
 subl 18 sp

Flags:

Examples: enter 22 ; Reserve 22 bytes for locals
 enter 0 ; Reserve no bytes for locals

102

ENTERSAV ENTERSAV

entersav - Enter function and save registers
 Format: b14 Flags:

Syntax: entersav stkc bmsk

Semantics: sp := sp - 4
 Move contents of fp to address contained in sp
 fp := sp
 sp := sp - 2*stkc
 pushregs bmsk

Description: This instruction is used as the first instruction in a
 routine generated from a C function definition. Its ef-
 fect is exactly equivalent to the action of these four
 instructions:

 pushl fp
 movl sp fp
 subl 2*stkc sp
 pushregs bmsk

 Or, more succinctly, the effect of entersav is exactly
 equivalent to these two instructions:

 enter stkc
 pushregs bmsk

 Thus, entersav performs the function entry housekeeping of
 enter, followed by saving of up to 32 registers on the
 stack.

Flags:

Examples: entersav 22 0x80000003 ; Reserve 22 bytes for locals and
 push w0, w1, and d7
 entersav 0 0x30000008 ; Reserve no bytes for locals and
 push w3, d4, and d5

103

GMOV GSTO

gmov - General move
 Format: mr Flags:

Syntax: gmov n ga gr

Semantics: gr := n bytes from ga

Description: Move n bytes (n = 1, 2, 4, or 8) from general address ga
 to general register gr. The general address can be any
 memory address or any register; it cannot be an immediate
 value.

 NOTE: How bytes are aligned in multiple registers and
 partial registers will be determined later.

Flags:

Examples: gmov 8 d1 w0 ; w0 thru w3 := 8 bytes from d1
 gmov 1 [sp+2] f2 ; part of f2 := byte at sp+2
 gmov 4 [L1] d0 ; part of d0 := 4 bytes addressed
 by L1

gsto - General store
 Format: mr Flags:

Syntax: gsto n gr ga

Semantics: ga := n bytes from gr

Description: Move n bytes (n = 1, 2, 4, or 8) from general register gr
 to general address ga. The general address can be any
 memory address or any register; it cannot be an immediate
 value.

 NOTE: How bytes are aligned in multiple registers and
 partial registers will be determined later.

Flags:

Examples: gsto 8 w0 d1 ; d1 := w0 thru w3
 gsto 1 f2 [sp+2] ; byte at sp+2 : = byte from f2
 gsto 4 d0 [L1] ; 4 bytes addressed by L1 := bytes
 from d0

104

HALT JUMP

halt - Halt the VMAX machine
 Format: n0 Flags:

Syntax: halt

Semantics: Halt processing

Description: The VMAX stops processing instrutions.

 QUESTION: We need to define exactly what happens: A
 message is sent from PCMAX2 to PC? Maybe some sort of
 return code should be transmitted?

Flags:

Example: halt ; Halt processing

jump - Jump
 Format: ij Flags:

Syntax: jump cc ma

Semantics: if (cc) goto EA(ma)

Description: If the condition indicated by condition code cc is TRUE,
 then jump to the effective address specified by ma.

Flags:

Examples: jump cUNC ReadOne ; Unconditionally goto ReadOne
 jump cG Sort ; if (GF == 1) goto Sort
 jump cNE [L1] ; if (EF == 0) goto routine whose
 address is in L1

105

JUMPB JUMPF

jumpb - Jump backward
 Format: a3 Flags:

Syntax: jumpb ma3

Semantics: goto EA(ma3)

Description: Jump to the effective address specified by ma3:

 pc := pc - 2*ma3

Flags:

Examples: jumpb ReadOne ; goto ReadOne
 jumpb Sort ; goto Sort

jumpf - Jump forward
 Format: a3 Flags:

Syntax: jumpf ma3

Semantics: goto EA(ma3)

Description: Jump to the effective address specified by ma3:

 pc := pc + 2*ma3

Flags:

Examples: jumpf ReadOne ; goto ReadOne
 jumpf Sort ; goto Sort

106

LEAL LEAL

leal - Load effective address
 Format: qr Flags:

Syntax: leal lv lr

Semantics: lr := EA(lv)

Description: Move the effective address of long value lv into long
 register lr. If lv is an immediate value or the contents
 of a register, the effect is the same as movl lv lr.

Flags:

Examples: leal [L1+L2] L0 ; L0 := L1 + L2
 leal 14 L1 ; L1 := 14
 leal [L1+14] L0 ; L0 := L1 + 14

107

LEAVE LEAVE

leave - Leave function
 Format: b1 Flags:

Syntax: leave stkc

Semantics: sp := fp
 Move long addressed by sp to fp
 sp := sp + 4
 Move long addressed by sp to pc
 sp := sp + 4
 sp := sp + 2*stkc

Description: This instruction is used to return from a routine gener-
 ated from a C function definition. Its effect is exactly
 equivalent to the action of these three instructions:

 movl fp sp
 popl fp
 ret stkc

 Typically, 2*stkc is the number of bytes needed for para-
 meters to the function. Part of the task of leave is to
 clear these parameters out of the stack. Note that stkc is
 an unsigned quantity, scaled by a factor of 2 (because the
 smallest entity that can be pushed or popped is a word).
 Thus, at most 510 bytes can be cleared from the stack by
 the leave instruction. If more must be cleared, then this
 must be done by a addl to sp following the call of the
 function.

 Many implementations of C assume that every function can
 take a variable number of parameters. Thus "leave 0" is
 always generated, and the stack is adjusted by a addl in-
 struction following the call.

 Note that the stkc operand for a leave instruction is the
 number of bytes used by PARAMETERS, while the stkc operand
 for an enter instruction is the number of bytes used by
 LOCALS. Thus, the two instructions are not exactly sym-
 metrical.

Flags:

Examples: leave 22 ; Clear 22 bytes from stack
 leave 0 ; Clear no bytes from stack

108

LEAVERES LEAVERES

leave - Leave function and restore registers
 Format: b14 Flags:

Syntax: leaveres stkc bmsk

Semantics: popregs bmsk
 sp := fp
 Move long addressed by sp to fp
 sp := sp + 4
 Move long addressed by sp to pc
 sp := sp + 4
 sp := sp + 2*stkc

Description: This instruction is used as the last instruction in a
 routine generated from a C function definition. Its ef-
 fect is exactly equivalent to the action of these four
 instructions:

 popregs bmsk
 movl fp sp
 popl fp
 ret stkc

 Or, more succinctly, the effect of leaveres is exactly
 equivalent to these two instructions:

 popregs bmsk
 leave stkc

 Thus, leaveres restores of up to 32 registers from the
 stack, and then performs the function exit housekeeping of
 leave.

Flags:

Examples: leaveres 22 0x80000003 ; Pop d7, w1, w0, and clear 22
 bytes from stack
 leaveres 0 0x30000008 ; Pop d5, d4, w3, and clear no
 bytes from stack

109

MOVBL MOVBW

movbl - Move byte to loworder byte of long
 Format: qr Flags:

Syntax: movbl bvl lr

Semantics: lob(lr) := bvl

Description: Byte value bvl is moved to the loworder byte of long reg-
 ister lr. The three highorder bytes of lr are NOT changed.

Flags:

Examples: movbl L1 L0 ; Move lob(L1) to lob(L0)
 movbl [sp+2] L1 ; Move byte at sp+2 to lob(L1)
 movbl [L1] L0 ; Move byte addressed by L1 to
 lob(L0)

movbw - Move byte to loworder byte of word
 Format: qr Flags:

Syntax: movbw bvw wr

Semantics: lob(wr) := bvw

Description: Byte value bvw is moved to the loworder byte of word reg-
 ister wr. The highorder byte of wr is NOT changed.

Flags:

Examples: movbw w1 w0 ; Move lob(w1) to lob(w0)
 movbw [sp+2] w1 ; Move byte at sp+2 to lob(w1)
 movbw [L1] w0 ; Move byte addressed by L1 to
 lob(w0)

110

MOVD MOVF

movd - Move double
 Format: qr Flags:

Syntax: movd dv dr

Semantics: dr := dv

Description: Move double value dv to double register dr.

Flags:

Examples: movd d1 d0 ; d0 := d1
 movd [sp+2] d1 ; d1 := double at sp+2
 movd [L1] d0 ; d0 := double addressed by L1

movf - Move float
 Format: qr Flags:

Syntax: movf fv fr

Semantics: fr := fv

Description: Move float value fv to float register fr.

Flags:

Examples: movf f1 f0 ; f0 := f1
 movf [sp+2] f1 ; f1 := float at sp+2
 movf [L1] f0 ; f0 := float addressed by L1

111

MOVFLAGS MOVL

movflags - Move word to flags register
 Format: qo Flags:

Syntax: movflags wv

Semantics: flags := wv

Description: Move word value wv to the flags register.

Flags:

Examples: movflags w1 ; flags := w1
 movflags [sp+2] ; flags := word at sp+2
 movflags [L1] ; flags := word addressed by L1

movl - Move long
 Format: qr Flags:

Syntax: movl lv lr

Semantics: lr := lv

Description: Move long value lv to long register lr.

Flags:

Examples: movl L1 L0 ; L0 := L1
 movl [sp+2] L1 ; L1 := long at sp+2
 movl [L1] L0 ; L0 := long addressed by L1

112

MOVW MOVWL

movw - Move word
 Format: qr Flags:

Syntax: movw wv wr

Semantics: wr := wv

Description: Move word value wv to word register wr.

Flags:

Examples: movw w1 w0 ; w0 := w1
 movw [sp+2] w1 ; w1 := word at sp+2
 movw [L1] w0 ; w0 := word addressed by L1

movwl - Move word to loworder word of long
 Format: qr Flags:

Syntax: movwl wv lr

Semantics: low(lr) := wv

Description: Word value wv is moved to the loworder word of long reg-
 ister lr. The highorder word of lr is NOT changed.

Flags:

Examples: movwl w1 L0 ; Move w1 to low(L0)
 movwl [sp+2] L1 ; Move word at sp+2 to low(L1)
 movwl [L1] L0 ; Move word addressed by L1 to
 low(L0)

113

MULD MULF

muld - Multipy double
 Format: qr Flags:

Syntax: muld dv dr

Semantics: dr := dr * dv

Description: Double register dr is multiplied by double value dv.

Flags:

Examples: muld d1 d1 ; d1 := d1 * d1
 muld d0 d1 ; d1 := d1 * d0
 muld [L1] d0 ; d0 := d0 * double value
 addressed by L1

mulf - Multipy float
 Format: qr Flags:

Syntax: mulf fv fr

Semantics: fr := fr * fv

Description: Float register fr is multiplied by float value fv.

Flags:

Examples: mulf f1 f1 ; f1 := f1 * f1
 mulf f0 f1 ; f1 := f1 * f0
 mulf [L1] f0 ; f0 := f0 * float value
 addressed by L1

114

MULSL MULSW

mulsl - Multipy signed long
 Format: qr Flags:

Syntax: mulsl lv lr

Semantics: lr := lr * lv

Description: Long register lr is multiplied by long value lv. Both
 quantities are treated as SIGNED integers.

Flags:

Examples: mulsl L2 L1 ; L1 := L1 * L2;
 mulsl [sp+2] L1 ; L1 := L1 * long at sp+2;
 mulsl [L1] L0 ; L0 := L0 * long value addressed
 by L1

mulsw - Multipy signed word
 Format: qr Flags:

Syntax: mulsw wv wr

Semantics: wr := wr * wv

Description: Word register wr is multiplied by word value wv. Both
 quantities are treated as SIGNED integers.

Flags:

Examples: mulsw w2 w1 ; w1 := w1 * w2;
 mulsw [sp+2] w1 ; w1 := w1 * word at sp+2;
 mulsw [L1] w0 ; w0 := w0 * word value addressed
 by L1

115

MULSWL MULUL

mulswl - Multipy signed words yielding long
 Format: qr Flags:

Syntax: mulswl wv lr

Semantics: lr := lr * wv

Description: The loworder word of long register lr is multiplied by
 word value wv, and the result is placed in long register
 lr. Note that the highorder word of lr can have any value
 before this instruction is executed; it is ignored. After
 the instruction is executed, the highorder word of lr
 is part of the product computed by this instruction. All
 quantities are treated as SIGNED integers.

Flags:

Examples: mulswl w2 L1 ; L1 := low(L1) * w2;
 mulswl [sp+2] L1 ; L1 := low(L1) * word at sp+2;
 mulswl [L1] L0 ; L0 := low(L0) * word value
 addressed by L1

mulul - Multipy unsigned long
 Format: qr Flags:

Syntax: mulul lv lr

Semantics: lr := lr * lv

Description: Long register lr is multiplied by long value lv. Both
 quantities are treated as UNSIGNED integers.

Flags:

Examples: mulul L2 L1 ; L1 := L1 * L2;
 mulul [sp+2] L1 ; L1 := L1 * long at sp+2;
 mulul [L1] L0 ; L0 := L0 * long value addressed
 by L1

116

MULUW MULUWL

muluw - Multipy unsigned word
 Format: qr Flags:

Syntax: muluw wv wr

Semantics: wr := wr * wv

Description: Word register wr is multiplied by word value wv. Both
 quantities are treated as UNSIGNED integers.

Flags:

Examples: muluw w2 w1 ; w1 := w1 * w2;
 muluw [sp+2] w1 ; w1 := w1 * word at sp+2;
 muluw [L1] w0 ; w0 := w0 * word value addressed
 by L1

muluwl - Multipy unsigned words yielding long
 Format: qr Flags:

Syntax: muluwl wv lr

Semantics: lr := lr * wv

Description: The loworder word of long register lr is multiplied by
 word value wv, and the result is placed in long register
 lr. Note that the highorder word of lr can have any value
 before this instruction is executed; it is ignored. After
 the instruction is executed, the highorder word of lr
 is part of the product computed by this instruction. All
 quantities are treated as UNSIGNED integers.

Flags:

Examples: muluwl w2 L1 ; L1 := low(L1) * w2;
 muluwl [sp+2] L1 ; L1 := low(L1) * word at sp+2;
 muluwl [L1] L0 ; L0 := low(L0) * word value
 addressed by L1

117

NEGD NEGF

negd - Negate double
 Format: qr Flags:

Syntax: negd dv dr

Semantics: dr := -dv

Description: Double register dr is set to the negation of double value
 dv.

Flags:

Examples: negd d1 d1 ; d1 := -d1
 negd d0 d1 ; d1 := -d0
 negd [L1] d0 ; d0 := - (double value
 addressed by L1)

negf - Negate float
 Format: qr Flags:

Syntax: negf fv fr

Semantics: fr := -fv

Description: Float register fr is set to the negation of float value
 fv.

Flags:

Examples: negf f1 f1 ; f1 := -f1
 negf f0 f1 ; f1 := -f0
 negf [L1] f0 ; f0 := - (float value
 addressed by L1)

118

NEGL NEGW

negl - Negate long
 Format: qr Flags:

Syntax: negl lv lr

Semantics: lr := -lv

Description: Long register lr is set to the negation of long value
 lv. The negation of a long is the 2's-complement of the
 long (so 0x80000000 is not changed by negation).

Flags:

Examples: negl L1 L1 ; L1 := -L1
 negl L0 L1 ; L1 := -L0
 negl [L1] L0 ; L0 := - (long value
 addressed by L1)

negw - Negate word
 Format: qr Flags:

Syntax: negw wv wr

Semantics: wr := -wv

Description: Word register wr is set to the negation of word value
 wv. The negation of a word is the 2's-complement of the
 word (so 0x8000 is not changed by negation).

Flags:

Examples: negw w1 w1 ; w1 := -w1
 negw w0 w1 ; w1 := -w0
 negw [L1] w0 ; w0 := - (word value
 addressed by L1)

119

NOP NOTL

nop - No operation
 Format: n0 Flags:

Syntax: nop

Semantics: No operation

Description: This instruction does nothing.

Flags:

Example: nop ; Kill some time

notl - Not long
 Format: qr Flags:

Syntax: notl lv lr

Semantics: lr := ~lv

Description: Long register lr is set to the bitwise negation of long
 value lv.

Flags:

Examples: notl L1 L1 ; L1 := ~L1
 notl L0 L1 ; L1 := ~L0
 notl [L1] L0 ; L0 := ~(long value addressed
 by L1)

120

NOTW ORL

notw - Not word
 Format: qr Flags:

Syntax: notw wv wr

Semantics: wr := ~wv

Description: Long register wr is set to the bitwise negation of long
 value wv.

Flags:

Examples: notw w1 w1 ; w1 := ~w1
 notw w0 w1 ; w1 := ~w0
 notw [L1] w0 ; w0 := ~(word value addressed
 by L1)

orl - Or long
 Format: qr Flags:

Syntax: orl lv lr

Semantics: lr := lr | lv

Description: Long value lv is bitwise or-ed to long register lr.

Flags:

Examples: orl L1 L1 ; L1 := L1 | L1
 orl L0 L1 ; L1 := L1 | L0
 orl [L1] L0 ; L0 := L0 | long value
 addressed by L1

121

ORW POPD

orw - Or word
 Format: qr Flags:

Syntax: orw wv wr

Semantics: wr := wr | wv

Description: Word value wv is bitwise or-ed to word register wr.

Flags:

Examples: orw w1 w1 ; w1 := w1 | w1
 orw w0 w1 ; w1 := w1 | w0
 orw [L1] w0 ; w0 := w0 | word value
 addressed by L1

popd - Pop double
 Format: qo Flags:

Syntax: popd da

Semantics: da := double addressed by sp
 sp := sp + 8

Description: Pop a double off the stack into da.

Flags:

Examples: popd d1 ; Pop into d1
 popd [fp+2] ; Pop into double at fp+2
 popd [L1] ; Pop into double addressed by L1

122

POPF POPL

popf - Pop float
 Format: qo Flags:

Syntax: popf fa

Semantics: fa := float addressed by sp
 sp := sp + 4

Description: Pop a float off the stack into fa.

Flags:

Examples: popf f1 ; Pop into f1
 popf [fp+2] ; Pop into float at fp+2
 popf [L1] ; Pop into float addressed by L1

popl - Pop long
 Format: qo Flags:

Syntax: popl la

Semantics: la := long addressed by sp
 sp := sp + 4

Description: Pop a long off the stack into la.

Flags:

Examples: popl L1 ; Pop into L1
 popl [fp+2] ; Pop into long at fp+2
 popl [L1] ; Pop into long addressed by L1

123

POPREGS POPW

popregs - Pop multiple registers
 Format: n04 Flags:

Syntax: popregs bmsk

Semantics: Multiple registers are popped.

Description: The bit mask bmsk is scanned from bit 31 to bit 0, and for
 each bit that is on, the corresponding register is popped
 (i.e., the top of the stack is popped into the register).
 See an earlier section for the numbering of the 32 major
 VMAX registers. Only as many bytes as a register holds
 are popped for each register. Thus, if bmsk indicates
 that d1, f1, L1, and w1 are to be popped, then 8-bytes, 4-
 bytes, 4-bytes, and 2-bytes are popped. Note that popregs
 and pushregs scan the bit mask in opposite orders, so the
 masked used to push a group of registers can also be used
 to pop the registers.

Flags:

Examples: popregs 0x80000003 ; Pop d7, w1, and w0
 popregs 0x30000008 ; Pop d5, d4, and w3
 popregs 0 ; Pop nothing

popw - Pop word
 Format: qo Flags:

Syntax: popw wa

Semantics: wa := word addressed by sp
 sp := sp + 2

Description: Pop a word off the stack into wa.

Flags:

Examples: popw w1 ; Pop into w1
 popw [fp+2] ; Pop into word at fp+2
 popw [L1] ; Pop into word addressed by L1

124

PUSHD PUSHF

pushd - Push double
 Format: qo Flags:

Syntax: pushd dv

Semantics: sp := sp - 8
 Move dv to address contained in sp

Description: Push double value dv onto the stack

Flags:

Examples: pushd d1 ; Push d1
 pushd [fp+2] ; Push double at fp+2
 pushd [L1] ; Push double addressed by L1
 pushd 3.14159 ; Push double 3.14159

pushf - Push float
 Format: qo Flags:

Syntax: pushf fv

Semantics: sp := sp - 4
 Move fv to address contained in sp

Description: Push float value fv onto the stack

Flags:

Examples: pushf f1 ; Push f1
 pushf [fp+2] ; Push float at fp+2
 pushf [L1] ; Push float addressed by L1
 pushf 3.14159 ; Push float 3.14159

125

PUSHL PUSHREGS

pushl - Push long
 Format: qo Flags:

Syntax: pushl lv

Semantics: sp := sp - 4
 Move lv to address contained in sp

Description: Push long value lv onto the stack

Flags:

Examples: pushl L1 ; Push L1
 pushl [fp+2] ; Push long at fp+2
 pushl [L1] ; Push long addressed by L1
 pushl 0xaabbccdd ; Push long 0xaabbccdd

pushregs - Push multiple registers
 Format: n04 Flags:

Syntax: pushregs bmsk

Semantics: Multiple registers are pushed.

Description: The bit mask bmsk is scanned from bit 0 to bit 31, and for
 each bit that is on, the corresponding register is pushed
 onto the stack. See an earlier section for the numbering
 of the 32 major VMAX registers. Only as many bytes as a
 register holds are pushed for each register. Thus, if bmsk
 indicates that w1, L1, f1, and d1 are to be pushed, then
 2-bytes, 4-bytes, 4-bytes, and 8-bytes are pushed. Note
 that pushregs and popregs scan the bit mask in opposite
 orders, so the masked used to push a group of registers
 can also be used to pop the registers.

Flags:

Examples: pushregs 0x80000003 ; Push w0, w1, and d7
 pushregs 0x30000008 ; Push w3, d4, and d5
 pushregs 0 ; Push nothing

126

PUSHW REMSL

pushw - Push word
 Format: qo Flags:

Syntax: pushw wv

Semantics: sp := sp - 2
 Move wv to address contained in sp

Description: Push word value wv onto the stack

Flags:

Examples: pushw w1 ; Push w1
 pushw [fp+2] ; Push word at fp+2
 pushw [L1] ; Push word addressed by L1
 pushw 0xeeff ; Push word 0xeeff

remsl - Remainder signed long
 Format: qr Flags:

Syntax: remsl lv lr

Semantics: lr := lr % lv

Description: Long register lr is divided by long value lv, and the re-
 mainder is place in lr. No quotient is calculated. All
 quantities are treated as SIGNED integers.

Flags:

Examples: remsl L2 L1 ; L1 := L1 % L2
 remsl [sp+2] L1 ; L1 := L1 % long at sp+2
 remsl [L1] L0 ; L0 := L0 % long value addressed
 by L1

127

REMSW REMUL

remsw - Remainder signed word
 Format: qr Flags:

Syntax: remsw wv wr

Semantics: wr := wr % wv

Description: Word register wr is divided by word value wv, and the re-
 mainder is place in wr. No quotient is calculated. All
 quantities are treated as SIGNED integers.

Flags:

Examples: remsw w2 w1 ; w1 := w1 % w2
 remsw [sp+2] w1 ; w1 := w1 % word at sp+2
 remsw [L1] w0 ; w0 := w0 % word value addressed
 by L1

remul - Remainder unsigned long
 Format: qr Flags:

Syntax: remul lv lr

Semantics: lr := lr % lv

Description: Long register lr is divided by long value lv, and the re-
 mainder is place in lr. No quotient is calculated. All
 quantities are treated as UNSIGNED integers.

Flags:

Examples: remul L2 L1 ; L1 := L1 % L2
 remul [sp+2] L1 ; L1 := L1 % long at sp+2
 remul [L1] L0 ; L0 := L0 % long value addressed
 by L1

128

REMUW REMUW

remuw - Remainder unsigned word
 Format: qr Flags:

Syntax: remuw wv wr

Semantics: wr := wr % wv

Description: Word register wr is divided by word value wv, and the re-
 mainder is place in wr. No quotient is calculated. All
 quantities are treated as UNSIGNED integers.

Flags:

Examples: remuw w2 w1 ; w1 := w1 % w2
 remuw [sp+2] w1 ; w1 := w1 % word at sp+2
 remuw [L1] w0 ; w0 := w0 % word value addressed
 by L1

129

RET RET

ret - Return from call
 Format: b1 Flags:

Syntax: ret stkc

Semantics: Move long addressed by sp to pc
 sp := sp + 4
 sp := sp + 2*stkc

Description: This instruction is used to return from a subroutine. It
 pops the return address off the stack into pc, and then
 increments the stack by 2*stkc to clear parameters to the
 subroutine out of the stack. Note that stkc is an unsign-
 ed quantity, scaled by a factor of 2 (because the smallest
 entity that can be pushed or popped is a word). Thus, at
 most 510 bytes can be cleared from the stack by the ret
 instruction. If more must be cleared, then this must be
 done by a addl to sp following the call of the function.

 Many implementations of C assume that every function can
 take a variable number of parameters. In such cases,
 "ret 0" is always generated, and the stack is adjusted by
 an addl instruction following the call.

Flags:

Examples: ret 22 ; Clear 22 bytes from stack
 ret 0 ; Clear no bytes from stack

130

RLIL RLIW

rlil - Rotate left immediate long
 Format: ir Flags:

Syntax: rlil sc lr

Semantics: lr := lr rotated left by sc bits

Description: Long register lr is rotated left by sc bits. Bits shifted
 out of the highorder end of the register are shifted into
 the loworder end of the register. Note that the maximum
 value sc can have is 31. This is no problem, since there
 is never any need to rotate a long register by 32 bits,
 specified as an immediate value. The sc value is UNSIGNED.

Flags:

Examples: rlil 1 L1 ; Rotate L1 left 1 bit
 rlil 10 L2 ; Rotate L2 left 10 bits
 rlil 31 L3 ; Rotate L3 left 31 bits

rliw - Rotate left immediate word
 Format: ir Flags:

Syntax: rliw sc wr

Semantics: wr := wr rotated left by sc bits

Description: Word register wr is rotated left by sc bits. Bits shifted
 out of the highorder end of the register are shifted into
 the loworder end of the register. If sc >= 16, then the
 effect is the same as if the number of bits rotated is
 sc mod 16. The sc value is UNSIGNED.

Flags:

Examples: rliw 1 w1 ; Rotate w1 left 1 bit
 rliw 10 w2 ; Rotate w2 left 10 bits
 rliw 31 w3 ; Rotate w3 left 15 bits

131

RLL RLW

rll - Rotate left long
 Format: qr Flags:

Syntax: rll bvl lr

Semantics: lr := lr rotated left by bvl bits

Description: Long register lr is rotated left by bvl bits. Bits shift-
 ed out of the highorder end of the register are shifted
 into the loworder end of the register. If bvl >= 32, then
 the effect is the same as if the number of bits rotated is
 bvl mod 32. The bvl value is UNSIGNED.

Flags:

Examples: rll L2 L1 ; Rotate L1 left by lob(L2) bits
 rll [sp+2] L2 ; Rotate L2 left by no. bits spec-
 ifed by byte at sp+2
 rll [L1] L3 ; Rotate L3 left by no. bits spec-
 ifed by byte addressed by L1

rlw - Rotate left word
 Format: qr Flags:

Syntax: rlw bvw wr

Semantics: wr := wr rotated left by bvw bits

Description: Word register wr is rotated left by bvw bits. Bits shift-
 ed out of the highorder end of the register are shifted
 into the loworder end of the register. If bvw >= 16, then
 the effect is the same as if the number of bits rotated is
 bvw mod 16. The bvw value is UNSIGNED.

Flags:

Examples: rlw w2 w1 ; Rotate w1 left by lob(w2) bits
 rlw [sp+2] w2 ; Rotate w2 left by no. bits spec-
 ifed by byte at sp+2
 rlw [L1] w3 ; Rotate w3 left by no. bits spec-
 ifed by byte addressed by L1

132

RRIL RRIW

rril - Rotate right immediate long
 Format: ir Flags:

Syntax: rril sc lr

Semantics: lr := lr rotated right by sc bits

Description: Long register lr is rotated right by sc bits. Bits shift-
 ed out of the loworder end of the register are shifted in-
 to the highorder end of the register. Note that the maxi-
 mum value sc can have is 31. This is no problem, since
 there is never any need to rotate a long register by 32
 bits, specified as an immediate value. The sc value is
 UNSIGNED.

Flags:

Examples: rril 1 L1 ; Rotate L1 right 1 bit
 rril 10 L2 ; Rotate L2 right 10 bits
 rril 31 L3 ; Rotate L3 right 31 bits

rriw - Rotate right immediate word
 Format: ir Flags:

Syntax: rriw sc wr

Semantics: wr := wr rotated right by sc bits

Description: Word register wr is rotated right by sc bits. Bits shift-
 ed out of the loworder end of the register are shifted in-
 to the highorder end of the register. If sc >= 16, then
 the effect is the same as if the number of bits rotated is
 sc mod 16. The sc value is UNSIGNED.

Flags:

Examples: rriw 1 w1 ; Rotate w1 right 1 bit
 rriw 10 w2 ; Rotate w2 right 10 bits
 rriw 31 w3 ; Rotate w3 right 15 bits

133

RRL RRW

rrl - Rotate right long
 Format: qr Flags:

Syntax: rrl bvl lr

Semantics: lr := lr rotated right by bvl bits

Description: Long register lr is rotated right by bvl bits. Bits shif-
 ted out of the loworder end of the register are shifted
 into the highorder end of the register. If bvl >= 32,
 then the effect is the same as if the number of bits ro-
 tated is bvl mod 32. The bvl value is UNSIGNED.

Flags:

Examples: rrl L2 L1 ; Rotate L1 right by lob(L2) bits
 rrl [sp+2] L2 ; Rotate L2 right by no. bits spe-
 cifed by byte at sp+2
 rrl [L1] L3 ; Rotate L3 right by no. bits spe-
 cifed by byte addressed by L1

rrw - Rotate right word
 Format: qr Flags:

Syntax: rrw bvw wr

Semantics: wr := wr rotated right by bvw bits

Description: Word register wr is rotated right by bvw bits. Bits shif-
 ted out of the loworder end of the register are shifted
 into the highorder end of the register. If bvw >= 16,
 then the effect is the same as if the number of bits ro-
 tated is bvw mod 16. The bvw value is UNSIGNED.

Flags:

Examples: rrw w2 w1 ; Rotate w1 right by lob(w2) bits
 rrw [sp+2] w2 ; Rotate w2 right by no. bits spe-
 cifed by byte at sp+2
 rrw [L1] w3 ; Rotate w3 right by no. bits spe-
 cifed by byte addressed by L1

134

SET0L SET0W

set0l - Store condition(0) in long
 Format: qc Flags:

Syntax: set0l c0 la

Semantics: la := (condition c0 is TRUE)

Description: The long addressed by la is set to the integer value 1 if
 the condition specified by c0 is TRUE. Otherwise, it is
 set to 0. Note that only conditions 1 through 7 can be
 specified by c0; see the set1l instruction for conditions
 8 through 14. (See the description of the i-operand of
 the ij-format for a list of all conditions.)

Flags:

Examples: set0l cNE L2 ; L2 := (EF==0)
 set0l cG [sp+2] ; Long at sp+2 := (GF==1)
 set0l cLU [L1] ; Long addressed by L1 := (LUF==1)

set0w - Store condition(0) in word
 Format: qc Flags:

Syntax: set0w c0 wa

Semantics: wa := (condition c0 is TRUE)

Description: The word addressed by wa is set to the integer value 1 if
 the condition specified by c0 is TRUE. Otherwise, it is
 set to 0. Note that only conditions 1 through 7 can be
 specified by c0; see the set1w instruction for conditions
 8 through 14. (See the description of the i-operand of
 the ij-format for a list of all conditions.)

Flags:

Examples: set0w cNE w2 ; w2 := (EF==0)
 set0w cG [sp+2] ; Word at sp+2 := (GF==1)
 set0w cLU [L1] ; Word addressed by L1 := (LUF==1)

135

SET1L SET1W

set1l - Store condition(1) in long
 Format: qc Flags:

Syntax: set1l c0 la

Semantics: la := (condition c1+8 is TRUE)

Description: The long addressed by la is set to the integer value 1 if
 the condition specified by c1+8 is TRUE. Otherwise, it is
 set to 0. Note that only conditions 8 through 14 can be
 specified by c1; see the set0l instruction for conditions
 1 through 7. (See the description of the i-operand of the
 ij-format for a list of all conditions.)

Flags:

Examples: set1l cL L2 ; L2 := (LF==1)
 set1l cE [sp+2] ; Long at sp+2 := (EF==1)
 set1l cGU [L1] ; Long addressed by L1 := (GUF==1)

set1w - Store condition(1) in word
 Format: qc Flags:

Syntax: set1w c0 wa

Semantics: wa := (condition c1+8 is TRUE)

Description: The word addressed by wa is set to the integer value 1 if
 the condition specified by c1+8 is TRUE. Otherwise, it is
 set to 0. Note that only conditions 8 through 14 can be
 specified by c1; see the set0w instruction for conditions
 1 through 7. (See the description of the i-operand of the
 ij-format for a list of all conditions.)

Flags:

Examples: set1w cL w2 ; w2 := (LF==1)
 set1w cE [sp+2] ; Word at sp+2 := (EF==1)
 set1w cGU [L1] ; Word addressed by L1 := (GUF==1)

136

SLIL SLIW

slil - Shift left immediate long
 Format: ir Flags:

Syntax: slil sc lr

Semantics: lr := lr shifted left by sc bits

Description: Long register lr is shifted left by sc bits. Bits shifted
 out of the highorder end of the register are lost, and
 zero bits are shifted into the loworder end of the regis-
 ter. Note that the maximum value sc can have is 31. This
 is no problem, since there is never any need to shift a
 long register by 32 bits, specified as an immediate value.
 The sc value is UNSIGNED.

Flags:

Examples: slil 1 L1 ; Shift L1 left 1 bit
 slil 10 L2 ; Shift L2 left 10 bits
 slil 31 L3 ; Shift L3 left 31 bits

sliw - Shift left immediate word
 Format: ir Flags:

Syntax: sliw sc wr

Semantics: wr := wr shifted left by sc bits

Description: Word register wr is shifted left by sc bits. Bits shifted
 out of the highorder end of the register are lost, and
 zero bits are shifted into the loworder end of the regis-
 ter. If sc >= 16, then wr is set to zero. The sc value
 is UNSIGNED.

Flags:

Examples: sliw 1 w1 ; Shift w1 left 1 bit
 sliw 10 w2 ; Shift w2 left 10 bits
 sliw 16 w3 ; w3 := 0

137

SLL SLW

sll - Shift left long
 Format: qr Flags:

Syntax: sll bvl lr

Semantics: lr := lr shifted left by bvl bits

Description: Long register lr is shifted left by bvl bits. Bits shift-
 ed out of the highorder end of the register are lost, and
 zero bits are shifted into the loworder end of the regis-
 ter. If bvl >= 32, then lr is set to zero. The bvl value
 is UNSIGNED.

Flags:

Examples: sll L2 L1 ; Shift L1 left by lob(L2) bits
 sll [sp+2] L2 ; Shift L2 left by no. bits spec-
 ifed by byte at sp+2
 sll [L1] L3 ; Shift L3 left by no. bits spec-
 ifed by byte addressed by L1

slw - Shift left word
 Format: qr Flags:

Syntax: slw bvw wr

Semantics: wr := wr shifted left by bvw bits

Description: Word register wr is shifted left by bvw bits. Bits shift-
 ed out of the highorder end of the register are lost, and
 zero bits are shifted into the loworder end of the regis-
 ter. If bvw >= 16, then wr is set to zero. The bvw value
 is UNSIGNED.

Flags:

Examples: slw w2 w1 ; Shift w1 left by lob(w2) bits
 slw [sp+2] w2 ; Shift w2 left by no. bits spec-
 ifed by byte at sp+2
 slw [L1] w3 ; Shift w3 left by no. bits spec-
 ifed by byte addressed by L1

138

SQRTD SQRTF

sqrtd - Square root of double
 Format: qr Flags:

Syntax: sqrtd dv dr

Semantics: dr := sqrt(dv)

Description: The square root of double dv is stored in double register
 dr.

 QUESTION: What if dv < 0?

Flags:

Examples: sqrtd d1 d1 ; d1 := sqrt(d1)
 sqrtd d0 d1 ; d1 := sqrt(d0)
 sqrtd [L1] d0 ; d0 := sqrt(double value
 addressed by L1)

sqrtf - Square root of float
 Format: qr Flags:

Syntax: sqrtf fv fr

Semantics: fr := sqrt(fv)

Description: The square root of float fv is stored in float register
 fr.

 QUESTION: What if fv < 0?

Flags:

Examples: sqrtf f1 f1 ; f1 := sqrt(f1)
 sqrtf f0 f1 ; f1 := sqrt(f0)
 sqrtf [L1] f0 ; f0 := sqrt(float value
 addressed by L1)

139

SRAIL SRAIW

srail - Shift right arithmetic immediate long
 Format: ir Flags:

Syntax: srail sc lr

Semantics: lr := lr shifted right arithmetically by sc bits

Description: Long register lr is shifted right arithmetically by sc
 bits. Bits shifted out of the loworder end of the regis-
 ter are lost. The sign bit is shifted into the highorder
 bits of the register. Note that the maximum value sc can
 have is 31. This is not a problem, because after a shift
 of 31 bits, lr is completely filled with the sign bit,
 i.e., lr is either 0 or -1. The sc value is UNSIGNED.

Flags:

Examples: srail 1 L1 ; Shift L1 right arith. 1 bit
 srail 10 L2 ; Shift L2 right arith. 10 bits
 srail 31 L3 ; Shift L3 right arith. 31 bits

sraiw - Shift right arithmetic immediate word
 Format: ir Flags:

Syntax: sraiw sc wr

Semantics: wr := wr shifted right arithmetically by sc bits

Description: Word register wr is shifted right arithmetically by sc
 bits. Bits shifted out of the loworder end of the regis-
 ter are lost. The sign bit is shifted into the highorder
 bits of the register. If sc >= 15, then wr is completely
 filled with the sign bit, i.e., wr is either 0 or -1. The
 sc value is UNSIGNED.

Flags:

Examples: sraiw 1 w1 ; Shift w1 right arith. 1 bit
 sraiw 10 w2 ; Shift w2 right arith. 10 bits
 sraiw 15 w3 ; w3 := 0 or -1

140

SRAL SRAW

sral - Shift right arithmetic long
 Format: qr Flags:

Syntax: sral bvl lr

Semantics: lr := lr shifted right arithmetically by bvl bits

Description: Long register lr is shifted right arithmetically by bvl
 bits. Bits shifted out of the loworder end of the regis-
 ter are lost. The sign bit is shifted into the highorder
 bits of the register. If bvl >= 31, then lr is completely
 filled with the sign bit, i.e., lr is either 0 or -1. The
 bvl value is UNSIGNED.

Flags:

Examples: sral L2 L1 ; Shift L1 right arith. by lob(L2)
 bits
 sral [sp+2] L2 ; Shift L2 right arith. by no.
 bits specifed by byte at sp+2
 sral [L1] L3 ; Shift L3 right arith. by no.
 bits specifed by byte address-
 ed by L1

sraw - Shift right arithmetic word
 Format: qr Flags:

Syntax: sraw bvw wr

Semantics: wr := wr shifted right arithmetically by bvw bits

Description: Word register wr is shifted right arithmetically by bvw
 bits. Bits shifted out of the loworder end of the regis-
 ter are lost. The sign bit is shifted into the highorder
 bits of the register. If bvw >= 15, then wr is completely
 filled with the sign bit, i.e., wr is either 0 or -1. The
 bvw value is UNSIGNED.

Flags:

Examples: sraw w2 w1 ; Shift w1 right arith. by lob(w2)
 bits
 sraw [sp+2] w2 ; Shift w2 right arith. by no.
 bits specifed by byte at sp+2
 sraw [L1] w3 ; Shift w3 right arith. by no.
 bits specifed by byte address-
 ed by L1

141

SRLIL SRLIW

srlil - Shift right logical immediate long
 Format: ir Flags:

Syntax: srlil sc lr

Semantics: lr := lr shifted right logically by sc bits

Description: Long register lr is shifted right logically by sc bits.
 Bits shifted out of the loworder end of the register are
 lost, and zero bits are shifted into the highorder end of
 the register. Note that the maximum value sc can have is
 31. This is not a problem, because a shift of 32 bits
 causes lr to be set to zero. The sc value is UNSIGNED.

Flags:

Examples: srlil 1 L1 ; Shift L1 right logical 1 bit
 srlil 10 L2 ; Shift L2 right logical 10 bits
 srlil 31 L3 ; Shift L3 right logical 31 bits

srliw - Shift right logical immediate word
 Format: ir Flags:

Syntax: srliw sc wr

Semantics: wr := wr shifted right logically by sc bits

Description: Word register wr is shifted right logically by sc bits.
 Bits shifted out of the loworder end of the register are
 lost, and zero bits are shifted into the highorder end of
 the register. If sc >= 16, then wr is set to zero. The
 sc value is UNSIGNED.

Flags:

Examples: srliw 1 w1 ; Shift w1 right logical 1 bit
 srliw 10 w2 ; Shift w2 right logical 10 bits
 srliw 16 w3 ; w3 := 0

142

SRLL SRLW

srll - Shift right logical long
 Format: qr Flags:

Syntax: srll bvl lr

Semantics: lr := lr shifted right logically by bvl bits

Description: Long register lr is shifted right logically by bvl bits.
 Bits shifted out of the loworder end of the register are
 lost, and zero bits are shifted into the highorder end of
 the register. If bvl >= 32, then lr is set to zero. The
 bvl value is UNSIGNED.

Flags:

Examples: srll L2 L1 ; Shift L1 right logical by
 lob(L2) bits
 srll [sp+2] L2 ; Shift L2 right logical by no.
 bits specifed by byte at sp+2
 srll [L1] L3 ; Shift L3 right logical by no.
 bits specifed by byte address-
 ed by L1

srlw - Shift right logical word
 Format: qr Flags:

Syntax: srlw bvw wr

Semantics: wr := wr shifted right logically by bvw bits

Description: Word register wr is shifted right logically by bvw bits.
 Bits shifted out of the loworder end of the register are
 lost, and zero bits are shifted into the highorder end of
 the register. If bvw >= 16, then wr is set to zero. The
 bvw value is UNSIGNED.

Flags:

Examples: srlw w2 w1 ; Shift w1 right logical by
 lob(w2) bits
 srlw [sp+2] w2 ; Shift w2 right logical by no.
 bits specifed by byte at sp+2
 srlw [L1] w3 ; Shift w3 right logical by no.
 bits specifed by byte address-
 ed by L1

143

STOD STOF

stod - Store double
 Format: qr Flags:

Syntax: stod dr da

Semantics: da := dr

Description: Store double register dr at double address da.

Flags:

Examples: stod d0 d1 ; d1 := d0
 stod d1 [sp+2] ; double at sp+2 := d1
 stod d0 [L1] ; double addressed by L1 := d0

stof - Store float
 Format: qr Flags:

Syntax: stof fr fa

Semantics: fa := fr

Description: Store float register fr at float address fa.

Flags:

Examples: stof f0 f1 ; f1 := f0
 stof f1 [sp+2] ; float at sp+2 := f1
 stof f0 [L1] ; float addressed by L1 := f0

144

STOFLAGS STOL

stoflags - Store flags register into word
 Format: qo Flags:

Syntax: stoflags wa

Semantics: wa := flags

Description: Store the flags register at word address wa.

Flags:

Examples: stoflags w1 ; w1 := flags
 stoflags [sp+2] ; word at sp+2 := flags
 stoflags [L1] ; word addressed by L1 := flags

stol - Store long
 Format: qr Flags:

Syntax: stol lr la

Semantics: la := lr

Description: Store long register lr at long address la.

Flags:

Examples: stol L0 L1 ; L1 := L0
 stol L1 [sp+2] ; long at sp+2 := L1
 stol L0 [L1] ; long addressed by L1 := L0

145

STOLB STOLW

stolb - Store loworder byte of long into byte
 Format: qr Flags:

Syntax: stolb lr bal

Semantics: bal := lob(lr)

Description: The loworder byte of long register lr is stored at byte
 address bal. Only a single byte of the destination is
 changed.

Flags:

Examples: stolb L0 L1 ; lob(L1) := lob(L0)
 stolb L1 [sp+2] ; byte at sp+2 := lob(L1)
 stolb L0 [L1] ; byte addressed by L1 := lob(L0)

stolw - Store loworder word of long into word
 Format: qr Flags:

Syntax: stolw lr wa

Semantics: wa := low(lr)

Description: The loworder word of long register lr is stored at word
 address wa. Only a single word of the destination is
 changed.

Flags:

Examples: stolw L0 w1 ; w1 := low(L0)
 stolw L1 [sp+2] ; word at sp+2 := low(L1)
 stolw L0 [L1] ; word addressed by L1 := low(L0)

146

STOW STOWB

stow - Store word
 Format: qr Flags:

Syntax: stow wr wa

Semantics: wa := wr

Description: Store word register wr at word address wa.

Flags:

Examples: stow w0 w1 ; w1 = w0
 stow w1 [sp+2] ; word at sp+2 := w1
 stow w0 [L1] ; word addressed by L1 := w0

stowb - Store loworder byte of word into byte
 Format: qr Flags:

Syntax: stowb wr baw

Semantics: baw := lob(wr)

Description: The loworder byte of word register wr is stored at byte
 address baw. Only a single byte of the destination is
 changed.

Flags:

Examples: stowb w0 w1 ; lob(w1) := lob(w0)
 stowb w1 [sp+2] ; byte at sp+2 := lob(w1)
 stowb w0 [L1] ; byte addressed by L1 := lob(w0)

147

SUBCL SUBD

subcl - Subtract long with carry
 Format: qr Flags:

Syntax: subcl lv lr

Semantics: lr := lr - lv - carry bit

Description: Long value lv and the carry bit are subtracted from long
 register lr. This instruction makes it possible to write
 multiple-precision arithmetic.

Flags: NOTE: The carry bit is not yet defined, so this instruc-
 tion is not yet available.

Examples: subcl L1 L1 ; L1 := L1 - L1 - carry bit
 subcl L0 L1 ; L1 := L1 - L0 - carry bit
 subcl [L1] L0 ; L0 := L0 - long value
 addressed by L1 - carry bit

subd - Subtract double
 Format: qr Flags:

Syntax: subd dv dr

Semantics: dr := dr - dv

Description: Double value dv is subtracted from double register dr.

Flags:

Examples: subd d1 d1 ; d1 := d1 - d1
 subd d0 d1 ; d1 := d1 - d0
 subd [L1] d0 ; d0 := d0 - double value
 addressed by L1

148

SUBF SUBL

subf - Subtract float
 Format: qr Flags:

Syntax: subf fv fr

Semantics: fr := fr - fv

Description: Float value fv is subtracted from float register fr.

Flags:

Examples: subf f1 f1 ; f1 := f1 - f1
 subf f0 f1 ; f1 := f1 - f0
 subf [L1] f0 ; f0 := f0 - float value
 addressed by L1

subl - Subtract long
 Format: qr Flags:

Syntax: subl lv lr

Semantics: lr := lr - lv

Description: Long value lv is subtracted from long register lr.

Flags:

Examples: subl L1 L1 ; L1 := L1 - L1
 subl L0 L1 ; L1 := L1 - L0
 subl [L1] L0 ; L0 := L0 - long value
 addressed by L1

149

SUBSWL SUBUWL

subswl - Subtract signed word from long
 Format: qr Flags:

Syntax: subswl wv lr

Semantics: lr := lr - sign-extend(wv)

Description: Word value wv is sign-extended to 32 bits, and then sub-
 tracted from long register lr.

Flags:

Examples: subswl w1 L1 ; L1 := L1 - sign-extend(w1)
 subswl w0 L1 ; L1 := L1 - sign-extend(w0)
 subswl [L1] L0 ; L0 := L0 - sign-extend(word value
 addressed by L1)

subuwl - Subtract unsigned word from long
 Format: qr Flags:

Syntax: subuwl wv lr

Semantics: lr := lr - zero-extend(wv)

Description: Word value wv is zero-extended to 32 bits, and then sub-
 tracted from long register lr.

Flags:

Examples: subuwl w1 L1 ; L1 := L1 - zero-extend(w1)
 subuwl w0 L1 ; L1 := L1 - zero-extend(w0)
 subuwl [L1] L0 ; L0 := L0 - zero-extend(word value
 addressed by L1)

150

SUBW XORL

subw - Subtract word
 Format: qr Flags:

Syntax: subw wv wr

Semantics: wr := wr - wv

Description: Word value wv is subtracted from word register wr.

Flags:

Examples: subw w1 w1 ; w1 := w1 - w1
 subw w0 w1 ; w1 := w1 - w0
 subw [L1] w0 ; w0 := w0 - word value
 addressed by L1

xorl - Exclusive or long
 Format: qr Flags:

Syntax: xorl lv lr

Semantics: lr := lr ^ lv

Description: Long value lv is bitwise exclusive-or-ed to long register
 lr.

Flags:

Examples: xorl L1 L1 ; L1 := L1 ^ L1
 xorl L0 L1 ; L1 := L1 ^ L0
 xorl [L1] L0 ; L0 := L0 ^ long value
 addressed by L1

151

XORW XORW

xorw - Exclusive or word
 Format: qr Flags:

Syntax: xorw wv wr

Semantics: wr := wr ^ wv

Description: Word value wv is bitwise exclusive-or-ed to word register
 wr.

Flags:

Examples: xorw w1 w1 ; w1 := w1 ^ w1
 xorw w0 w1 ; w1 := w1 ^ w0
 xorw [L1] w0 ; w0 := w0 ^ word value
 addressed by L1

152

 APPENDIX A: Instructions Grouped by Format

This appendix contains a list of all VMAX instructions, organized by
format:

 +--------++----------+-----------+-----------+---------------+
 | format || number | first | second | examples |
 | || operands | operand | operand | |
 +--------++----------+-----------+-----------+---------------+
 | a3 || 1 | 3-byte adr| - | jump, call |
 +--------++----------+-----------+-----------+---------------+
 | b1 || 1 | 1-byte int| - | ret |
 +--------++----------+-----------+-----------+---------------+
 | b14 || 2 | 1-byte int| 4-byte msk| entersav |
 +--------++----------+-----------+-----------+---------------+
 | ij || 2 | cond. code| jump adr | jump, call |
 +--------++----------+-----------+-----------+---------------+
 | ir || 2 | imm. int | register | shift, rotate |
 +--------++----------+-----------+-----------+---------------+
 | mr || 2 | general | register | gmov, gsto |
 +--------++----------+-----------+-----------+---------------+
 | n0 || 0 | - | - | halt, nop |
 +--------++----------+-----------+-----------+---------------+
 | n04 || 1 | 4-byte msk| - | pushregs |
 +--------++----------+-----------+-----------+---------------+
 | qc || 2 | general | cond. code| store cond. |
 +--------++----------+-----------+-----------+---------------+
 | qo || 1 | general | - | push, pop |
 +--------++----------+-----------+-----------+---------------+
 | qr || 2 | general | register | add, move |
 +--------++----------+-----------+-----------+---------------+

 a3 Format

Opcode Operands Instruction Format Function
--

callb ma3 Call backward a3 jump
callf ma3 Call forward a3 jump

jumpb ma3 Jump backward a3 jump
jumpf ma3 Jump forward a3 jump

153

 APPENDIX A: Instructions Grouped by Format (continued)

 b1 Format

Opcode Operands Instruction Format Function
--

enter stkc Enter function b1 stack
leave stkc Leave function b1 jump
ret stkc Return from call b1 jump

 b14 Format

Opcode Operands Instruction Format Function
--

entersav stkc bmsk Enter func. and save regs b14 stack
leaveres stkc bmsk Leave func. and restore regs b14 jump

 ij Format

Opcode Operands Instruction Format Function
--

call cc ma Call ij jump
jump cc ma Jump ij jump

154

 APPENDIX A: Instructions Grouped by Format (continued)

 ir Format

Opcode Operands Instruction Format Function
--

rlil sc lr Rotate left immediate long ir shift
rliw sc wr Rotate left immediate word ir shift
rril sc lr Rotate right immediate long ir shift
rriw sc wr Rotate right immediate word ir shift

slil sc lr Shift left immediate long ir shift
sliw sc wr Shift left immediate word ir shift
srail sc lr Shift right arithmetic imm long ir shift
sraiw sc wr Shift right arithmetic imm word ir shift
srlil sc lr Shift right logical imm long ir shift
srliw sc wr Shift right logical imm word ir shift

 mr Format

Opcode Operands Instruction Format Function
--

gmov ga gr General move mr move
gsto ga gr General store mr store

 n0 Format

Opcode Operands Instruction Format Function
--

halt Halt the VMAX machine n0 misc
nop No operation n0 misc

155

 APPENDIX A: Instructions Grouped by Format (continued)

 n04 Format

Opcode Operands Instruction Format Function
--

pushregs bmsk Push multiple registers n04 stack
popregs bmsk Pop multiple registers n04 stack

 qc Format

Opcode Operands Instruction Format Function
--

set0l la c0 Store condition(0) in long qc flags
set1l la c1 Store condition(1) in long qc flags

set0w wa c0 Store condition(0) in word qc flags
set1w wa c1 Store condition(1) in word qc flags

 qo Format

Opcode Operands Instruction Format Function
--

movflags wv Move word to flags reg qo flags

popd da Pop double qo stack
popf fa Pop float qo stack
popl la Pop long qo stack
popw wa Pop word qo stack

156

 APPENDIX A: Instructions Grouped by Format (continued)

 qo Format (continued)

Opcode Operands Instruction Format Function
--

pushd dv Push double qo stack
pushf fv Push float qo stack
pushl lv Push long qo stack
pushw wv Push word qo stack

stoflags wa Store flags reg into word qo flags

 qr Format

Opcode Operands Instruction Format Function
--

absd dv dr Absolute value of double qr otherarith
absf fv fr Absolute value of float qr otherarith
absl lv lr Absolute value of long qr otherarith
absw wv wr Absolute value of word qr otherarith
addcl lv lr Add long with carry qr add
addd dv dr Add double qr add
addf fv fr Add float qr add
addl lv lr Add long qr add
addswl wv lr Add signed word to long qr add
adduwl wv lr Add unsigned word to long qr add
addw wv wr Add word qr add
andl lv lr And long qr logical
andw wv wr And word qr logical

cmpd dv dr Compare double qr compare
cmpf fv fr Compare float qr compare
cmpl lv lr Compare long qr compare
cmplb bvl lr Compare lob(long) to byte qr compare
cmpw wv wr Compare word qr compare
cmpwb bvw wr Compare lob(word) to byte qr compare
cvtbsl bvl lr Convert byte sign-ext to long qr convert
cvtbsw bvw wr Convert byte sign-ext to word qr convert
cvtbzl bvl lr Convert byte zero-ext to long qr convert

157

 APPENDIX A: Instructions Grouped by Format (continued)

 qr Format (continued)

Opcode Operands Instruction Format Function
--

cvtbzw bvw wr Convert byte zero-ext to word qr convert
cvtdf dv fr Convert double to float qr convert
cvtfd fv dr Convert float to double qr convert
cvtsld lv dr Convert signed long to double qr convert
cvtslf lv fr Convert signed long to float qr convert
cvttdsl dv lr Cnvrt trunc double to sgned lng qr convert
cvttdul dv lr Cnvrt trunc doub to unsgned lng qr convert
cvttfsl fv lr Cnvrt trunc float to signed lng qr convert
cvttful fv lr Cnvrt trunc float to unsgnd lng qr convert
cvtuld lv dr Convert unsigned long to double qr convert
cvtulf lv fr Convert unsigned long to float qr convert
cvtwsl wv lr Convert word sign-ext to long qr convert
cvtwzl wv lr Convert word zero-ext to long qr convert

divd dv dr Divide double qr divide
divf fv fr Divide float qr divide
divrsl lv lr Divide with rem signed long qr divide
divrslw wv lr Div with rem sgned long by word qr divide
divrsw wv wr Divide with rem signed word qr divide
divrul lv lr Divide with rem unsigned long qr divide
divrulw wv lr Div with rem unsgnd lng by word qr divide
divruw wv wr Divide with rem unsigned word qr divide
divsl lv lr Divide signed long qr divide
divsw wv wr Divide signed word qr divide
divul lv lr Divide unsigned long qr divide
divuw wv wr Divide unsigned word qr divide

leal lv lr Load effective address qr load

movbl bvl lr Move byte to lob(long) qr move
movbw bvw wr Move byte to lob(word) qr move
movd dv dr Move double qr move
movf fv fr Move float qr move
movl lv lr Move long qr move
movw wv wr Move word qr move
movwl wv lr Move word to low(long) qr move
muld dv dr Multiply double qr multiply
mulf fv fr Multiply float qr multiply
mulsl lv lr Multiply signed long qr multiply
mulsw wv wr Multiply signed word qr multiply
mulswl wv lr Multiply signed words -> long qr multiply
mulul lv lr Multiply unsigned long qr multiply
muluw wv wr Multiply unsigned word qr multiply

158

 APPENDIX A: Instructions Grouped by Format (continued)

 qr Format (continued)

Opcode Operands Instruction Format Function
--

muluwl wv lr Multiply unsigned words -> long qr multiply

negd dv dr Negate double qr subtract
negf fv fr Negate float qr subtract
negl lv lr Negate long qr subtract
negw wv wr Negate word qr subtract
notl lv lr Not long qr logical
notw wv wr Not word qr logical

orl lv lr Or long qr logical
orw wv wr Or word qr logical

remsl lv lr Remainder signed long qr divide
remsw wv wr Remainder signed word qr divide
remul lv lr Remainder unsigned long qr divide
remuw wv wr Remainder unsigned word qr divide

rll bvl lr Rotate left long qr shift
rlw bvw wr Rotate left word qr shift
rrl bvl lr Rotate right long qr shift
rrw bvw wr Rotate right word qr shift

sll bvl lr Shift left long qr shift
slw bvw wr Shift left word qr shift
sqrtd dv dr Square root of double qr otherarith
sqrtf fv fr Square root of float qr otherarith
sral bvl lr Shift right arithmetic long qr shift
sraw bvw wr Shift right arithmetic word qr shift
srll bvl lr Shift right logical long qr shift
srlw bvw wr Shift right logical word qr shift
stod da dr Store double qr store
stof fa fr Store float qr store
stol la lr Store long qr store
stolb bal lr Store lob(long) into byte qr store
stolw wa lr Store low(long) into word qr store
stow wa wr Store word qr store
stowb baw wr Store lob(word) into byte qr store
subcl lv lr Subtract long with carry qr subtract
subd dv dr Subtract double qr subtract
subf fv fr Subtract float qr subtract
subl lv lr Subtract long qr subtract
subswl wv lr Subtract signed word from long qr subtract
subuwl wv lr Subtract unsigned word from lng qr subtract

159

 APPENDIX A: Instructions Grouped by Format (continued)

 qr Format (continued)

Opcode Operands Instruction Format Function
--

subw wv wr Subtract word qr subtract

xorl lv lr Exclusive or long qr logical
xorw wv wr Exclusive or word qr logical

160

 APPENDIX B: Instructions Grouped by Function

This appendix contains a list of all VMAX instructions, organized into
these functional groups:

 data movement
 move memory-to-register moves
 store register-to-memory moves
 load load effective address
 flags move and store flags register

 arithmetic
 add add words, longs, ...
 subtract subtract words, longs, ...
 multiply multiply words, longs, ...
 divide divide longs, ...
 other arith abs, sqrt

 shift shift and rotate

 logical and, or, not, ...

 convert convert from one data type to another

 compare compare bytes, words, longs, ...

 jump jump and call

 stack pop, push, ...

 misc miscellaneous

 Data Movement Instructions

Opcode Operands Instruction Format Function
--

gmov ga gr General move mr move
movbl bvl lr Move byte to lob(long) qr move
movbw bvw wr Move byte to lob(word) qr move
movd dv dr Move double qr move
movf fv fr Move float qr move
movl lv lr Move long qr move
movw wv wr Move word qr move
movwl wv lr Move word to low(long) qr move

161

 APPENDIX B: Instructions Grouped by Function (continued)

 Data Movement Instructions (continued)

Opcode Operands Instruction Format Function
--

gsto ga gr General store mr store
stod da dr Store double qr store
stof fa fr Store float qr store
stol la lr Store long qr store
stolb bal lr Store lob(long) into byte qr store
stolw wa lr Store low(long) into word qr store
stow wa wr Store word qr store
stowb baw wr Store lob(word) into byte qr store

leal lv lr Load effective address qr load

movflags wv Move word to flags reg qo flags
stoflags wa Store flags reg into word qo flags

set0l la c0 Store condition(0) in long qc flags
set1l la c1 Store condition(1) in long qc flags
set0w wa c0 Store condition(0) in word qc flags
set1w wa c1 Store condition(1) in word qc flags

 Arithmetic Instructions

Opcode Operands Instruction Format Function
--

addcl lv lr Add long with carry qr add
addd dv dr Add double qr add
addf fv fr Add float qr add
addl lv lr Add long qr add
addswl wv lr Add signed word to long qr add
adduwl wv lr Add unsigned word to long qr add
addw wv wr Add word qr add

negd dv dr Negate double qr subtract
negf fv fr Negate float qr subtract
negl lv lr Negate long qr subtract
negw wv wr Negate word qr subtract

162

 APPENDIX B: Instructions Grouped by Function (continued)

 Arithmetic Instructions (continued)

Opcode Operands Instruction Format Function
--

subcl lv lr Subtract long with carry qr subtract
subd dv dr Subtract double qr subtract
subf fv fr Subtract float qr subtract
subl lv lr Subtract long qr subtract
subswl wv lr Subtract signed word from long qr subtract
subuwl wv lr Subtract unsigned word from lng qr subtract
subw wv wr Subtract word qr subtract

muld dv dr Multiply double qr multiply
mulf fv fr Multiply float qr multiply
mulsl lv lr Multiply signed long qr multiply
mulsw wv wr Multiply signed word qr multiply
mulswl wv lr Multiply signed words -> long qr multiply
mulul lv lr Multiply unsigned long qr multiply
muluw wv wr Multiply unsigned word qr multiply
muluwl wv lr Multiply unsigned words -> long qr multiply

divd dv dr Divide double qr divide
divf fv fr Divide float qr divide
divrsl lv lr Divide with rem signed long qr divide
divrslw wv lr Div with rem sgned long by word qr divide
divrsw wv wr Divide with rem signed word qr divide
divrul lv lr Divide with rem unsigned long qr divide
divrulw wv lr Div with rem unsgnd lng by word qr divide
divruw wv wr Divide with rem unsigned word qr divide
divsl lv lr Divide signed long qr divide
divsw wv wr Divide signed word qr divide
divul lv lr Divide unsigned long qr divide
divuw wv wr Divide unsigned word qr divide
remsl lv lr Remainder signed long qr divide
remsw wv wr Remainder signed word qr divide
remul lv lr Remainder unsigned long qr divide
remuw wv wr Remainder unsigned word qr divide

absd dv dr Absolute value of double qr otherarith
absf fv fr Absolute value of float qr otherarith
absl lv lr Absolute value of long qr otherarith
absw wv wr Absolute value of word qr otherarith

sqrtd dv dr Square root of double qr otherarith
sqrtf fv fr Square root of float qr otherarith

163

 APPENDIX B: Instructions Grouped by Function (continued)

 Shift Instructions

Opcode Operands Instruction Format Function
--

rlil sc lr Rotate left immediate long ir shift
rll bvl lr Rotate left long qr shift
rril sc lr Rotate right immediate long ir shift
rrl bvl lr Rotate right long qr shift

rliw sc wr Rotate left immediate word ir shift
rlw bvw wr Rotate left word qr shift
rriw sc wr Rotate right immediate word ir shift
rrw bvw wr Rotate right word qr shift

slil sc lr Shift left immediate long ir shift
sll bvl lr Shift left long qr shift
srail sc lr Shift right arithmetic imm long ir shift
sral bvl lr Shift right arithmetic long qr shift
srlil sc lr Shift right logical imm long ir shift
srll bvl lr Shift right logical long qr shift

sliw sc wr Shift left immediate word ir shift
slw bvw wr Shift left word qr shift
sraiw sc wr Shift right arithmetic imm word ir shift
sraw bvw wr Shift right arithmetic word qr shift
srliw sc wr Shift right logical imm word ir shift
srlw bvw wr Shift right logical word qr shift

 Logical Instructions

Opcode Operands Instruction Format Function
--

andl lv lr And long qr logical
notl lv lr Not long qr logical
orl lv lr Or long qr logical
xorl lv lr Exclusive or long qr logical

andw wv wr And word qr logical
notw wv wr Not word qr logical
orw wv wr Or word qr logical
xorw wv wr Exclusive or word qr logical

164

 APPENDIX B: Instructions Grouped by Function (continued)

 Conversion Instructions

Opcode Operands Instruction Format Function
--

cvtbzw bvw wr Convert byte zero-ext to word qr convert
cvtbsw bvw wr Convert byte sign-ext to word qr convert

cvtbzl bvl lr Convert byte zero-ext to long qr convert
cvtbsl bvl lr Convert byte sign-ext to long qr convert

cvtwzl wv lr Convert word zero-ext to long qr convert
cvtwsl wv lr Convert word sign-ext to long qr convert

cvtulf lv fr Convert unsigned long to float qr convert
cvtslf lv fr Convert signed long to float qr convert

cvtuld lv dr Convert unsigned long to double qr convert
cvtsld lv dr Convert signed long to double qr convert

cvttful fv lr Cnvrt trunc float to unsgnd lng qr convert
cvttfsl fv lr Cnvrt trunc float to signed lng qr convert
cvttdul dv lr Cnvrt trunc doub to unsgned lng qr convert
cvttdsl dv lr Cnvrt trunc double to sgned lng qr convert

cvtdf dv fr Convert double to float qr convert
cvtfd fv dr Convert float to double qr convert

 Compare Instructions

Opcode Operands Instruction Format Function
--

cmpd dv dr Compare double qr compare
cmpf fv fr Compare float qr compare
cmpl lv lr Compare long qr compare
cmplb bvl lr Compare lob(long) to byte qr compare
cmpw wv wr Compare word qr compare
cmpwb bvw wr Compare lob(word) to byte qr compare

165

 APPENDIX B: Instructions Grouped by Function (continued)

 Jump Instructions

Opcode Operands Instruction Format Function
--

call cc ma Call ij jump
callb ma3 Call backward a3 jump
callf ma3 Call forward a3 jump

jump cc ma Jump ij jump
jumpb ma3 Jump backward a3 jump
jumpf ma3 Jump forward a3 jump

leave stkc Leave function b1 jump
leaveres stkc bmsk Leave func. and restore regs b14 jump

ret stkc Return from call b1 jump

 Stack Instructions

Opcode Operands Instruction Format Function
--

enter stkc Enter function b1 stack
entersav stkc bmsk Enter func. and save regs b14 stack

pushregs bmsk Push multiple registers n04 stack
popregs bmsk Pop multiple registers n04 stack

popd da Pop double qo stack
pushd dv Push double qo stack

popf fa Pop float qo stack
pushf fv Push float qo stack

popl la Pop long qo stack
pushl lv Push long qo stack

popw wa Pop word qo stack
pushw wv Push word qo stack

166

 APPENDIX B: Instructions Grouped by Function (continued)

 Miscellaneous Instructions

Opcode Operands Instruction Format Function
--

halt Halt the VMAX machine n0 misc
nop No operation n0 misc

167

 APPENDIX C: Instructions Ordered Alphabetically by Opcode

Opcode Operands Instruction Format Function
--

absd dv dr Absolute value of double qr otherarith
absf fv fr Absolute value of float qr otherarith
absl lv lr Absolute value of long qr otherarith
absw wv wr Absolute value of word qr otherarith
addcl lv lr Add long with carry qr add
addd dv dr Add double qr add
addf fv fr Add float qr add
addl lv lr Add long qr add
addswl wv lr Add signed word to long qr add
adduwl wv lr Add unsigned word to long qr add
addw wv wr Add word qr add
andl lv lr And long qr logical
andw wv wr And word qr logical

call cc ma Call ij jump
callb ma3 Call backward a3 jump
callf ma3 Call forward a3 jump
cmpd dv dr Compare double qr compare
cmpf fv fr Compare float qr compare
cmpl lv lr Compare long qr compare
cmplb bvl lr Compare lob(long) to byte qr compare
cmpw wv wr Compare word qr compare
cmpwb bvw wr Compare lob(word) to byte qr compare
cvtbsl bvl lr Convert byte sign-ext to long qr convert
cvtbsw bvw wr Convert byte sign-ext to word qr convert
cvtbzl bvl lr Convert byte zero-ext to long qr convert
cvtbzw bvw wr Convert byte zero-ext to word qr convert
cvtdf dv fr Convert double to float qr convert
cvtfd fv dr Convert float to double qr convert
cvtsld lv dr Convert signed long to double qr convert
cvtslf lv fr Convert signed long to float qr convert
cvttdsl dv lr Cnvrt trunc double to sgned lng qr convert
cvttdul dv lr Cnvrt trunc doub to unsgned lng qr convert
cvttfsl fv lr Cnvrt trunc float to signed lng qr convert
cvttful fv lr Cnvrt trunc float to unsgnd lng qr convert
cvtuld lv dr Convert unsigned long to double qr convert
cvtulf lv fr Convert unsigned long to float qr convert
cvtwsl wv lr Convert word sign-ext to long qr convert
cvtwzl wv lr Convert word zero-ext to long qr convert

divd dv dr Divide double qr divide
divf fv fr Divide float qr divide
divrsl lv lr Divide with rem signed long qr divide
divrslw wv lr Div with rem sgned long by word qr divide
divrsw wv wr Divide with rem signed word qr divide
divrul lv lr Divide with rem unsigned long qr divide
divrulw wv lr Div with rem unsgnd lng by word qr divide

168

 APPENDIX C: Instructions Ordered Alphabetically by Opcode (continued)

Opcode Operands Instruction Format Function
--

divruw wv wr Divide with rem unsigned word qr divide
divsl lv lr Divide signed long qr divide
divsw wv wr Divide signed word qr divide
divul lv lr Divide unsigned long qr divide
divuw wv wr Divide unsigned word qr divide

enter stkc Enter function b1 stack
entersav stkc bmsk Enter func. and save regs b14 stack

gmov ga gr General move mr move
gsto ga gr General store mr store

halt Halt the VMAX machine n0 misc

jump cc ma Jump ij jump
jumpb ma3 Jump backward a3 jump
jumpf ma3 Jump forward a3 jump

leal lv lr Load effective address qr load
leave stkc Leave function b1 jump
leaveres stkc bmsk Leave func. and restore regs b14 jump

movbl bvl lr Move byte to lob(long) qr move
movbw bvw wr Move byte to lob(word) qr move
movd dv dr Move double qr move
movf fv fr Move float qr move
movflags wv Move word to flags reg qo flags
movl lv lr Move long qr move
movw wv wr Move word qr move
movwl wv lr Move word to low(long) qr move
muld dv dr Multiply double qr multiply
mulf fv fr Multiply float qr multiply
mulsl lv lr Multiply signed long qr multiply
mulsw wv wr Multiply signed word qr multiply
mulswl wv lr Multiply signed words -> long qr multiply
mulul lv lr Multiply unsigned long qr multiply
muluw wv wr Multiply unsigned word qr multiply
muluwl wv lr Multiply unsigned words -> long qr multiply

negd dv dr Negate double qr subtract
negf fv fr Negate float qr subtract
negl lv lr Negate long qr subtract
negw wv wr Negate word qr subtract
nop No operation n0 misc
notl lv lr Not long qr logical
notw wv wr Not word qr logical

169

 APPENDIX C: Instructions Ordered Alphabetically by Opcode (continued)

Opcode Operands Instruction Format Function
--

orl lv lr Or long qr logical
orw wv wr Or word qr logical

popd da Pop double qo stack
popf fa Pop float qo stack
popl la Pop long qo stack
popregs bmsk Pop multiple registers n04 stack
popw wa Pop word qo stack
pushd dv Push double qo stack
pushf fv Push float qo stack
pushl lv Push long qo stack
pushregs bmsk Push multiple registers n04 stack
pushw wv Push word qo stack

remsl lv lr Remainder signed long qr divide
remsw wv wr Remainder signed word qr divide
remul lv lr Remainder unsigned long qr divide
remuw wv wr Remainder unsigned word qr divide
ret stkc Return from call b1 jump
rlil sc lr Rotate left immediate long ir shift
rliw sc wr Rotate left immediate word ir shift
rll bvl lr Rotate left long qr shift
rlw bvw wr Rotate left word qr shift
rril sc lr Rotate right immediate long ir shift
rriw sc wr Rotate right immediate word ir shift
rrl bvl lr Rotate right long qr shift
rrw bvw wr Rotate right word qr shift

set0l la c0 Store condition(0) in long qc flags
set0w wa c0 Store condition(0) in word qc flags
set1l la c1 Store condition(1) in long qc flags
set1w wa c1 Store condition(1) in word qc flags
slil sc lr Shift left immediate long ir shift
sliw sc wr Shift left immediate word ir shift
sll bvl lr Shift left long qr shift
slw bvw wr Shift left word qr shift
sqrtd dv dr Square root of double qr otherarith
sqrtf fv fr Square root of float qr otherarith
srail sc lr Shift right arithmetic imm long ir shift
sraiw sc wr Shift right arithmetic imm word ir shift
sral bvl lr Shift right arithmetic long qr shift
sraw bvw wr Shift right arithmetic word qr shift
srlil sc lr Shift right logical imm long ir shift
srliw sc wr Shift right logical imm word ir shift
srll bvl lr Shift right logical long qr shift
srlw bvw wr Shift right logical word qr shift

170

 APPENDIX C: Instructions Ordered Alphabetically by Opcode (continued)

Opcode Operands Instruction Format Function
--

stod da dr Store double qr store
stof fa fr Store float qr store
stoflags wa Store flags reg into word qo flags
stol la lr Store long qr store
stolb bal lr Store lob(long) into byte qr store
stolw wa lr Store low(long) into word qr store
stow wa wr Store word qr store
stowb baw wr Store lob(word) into byte qr store
subcl lv lr Subtract long with carry qr subtract
subd dv dr Subtract double qr subtract
subf fv fr Subtract float qr subtract
subl lv lr Subtract long qr subtract
subswl wv lr Subtract signed word from long qr subtract
subuwl wv lr Subtract unsigned word from lng qr subtract
subw wv wr Subtract word qr subtract

xorl lv lr Exclusive or long qr logical
xorw wv wr Exclusive or word qr logical

171

 APPENDIX D: Differences Between VMAX v1.00 and v2.00

Version History

 Version 1.00: 1990 April 26

 Version 2.00: 1990 July 16

Document Changes from Version 1.00 to Version 2.00

The following sections are new or have been changed:

 VMAX Memory and Address Space CHANGED
 VMAX Registers CHANGED
 Addressing Modes NEW
 Overview of Formats EXPANDED
 The qr Format CHANGED
 The mr Format NEW
 The b14 Format NEW
 The n04 Format NEW
 Instruction Set Summary by Function NEW
 Appendices D, E, and F NEW
 Instruction Descriptions NEW INSTRUCTIONS

Each of the major changes is described in the following.

VMAX Memory and Address Space (CHANGED)

VMAX memory is now mapped directly onto the PCMAX2 Vram. The VMAX stack
grows from high addresses to low addresses, so the organization of Code
Space, Data Space, Heap, and Stack is now reversed in VMAX memory.

VMAX Registers (CHANGED)

There are now 8 of each type of register, and no registers overlap. For
the time being, VMAX registers will be stored in the PCMAX2 DataRam rather
than in PCMAX2 registers.

172

 APPENDIX D: Differences Between VMAX v1.00 and v2.00 (continued)

The flags register has been changed so that instead of the traditional
overflow flag, carry flag, zero flag, and sign flag, the following flags
are used: less than unsigned flag, less than signed flag, equal flag,
greater than signed flag, and greater than unsigned flag. Only compare
instructions change the flag bits, so the VMAX interpreter need not deal
with flags for every arithmetic instruction.

Addressing Modes (NEW)

Most of the original addressing modes have been omitted and replaced with
based, indexed, and based-indexed modes. The indexed modes allow a scale
factor of 1, 2, 4, or 8 to be used. Displacements of various lengths are
allowed with all the new addressing modes.

Overview of Formats (EXPANDED)

This section of the document now includes a brief discussion of each in-
struction format.

The qr Format (CHANGED)

The qr format was changed to allow for the new based, indexed, and based-
indexed addressing modes.

The mr, b14, and n04 Formats (NEW)

The mr format allows 1, 2, 4, or 8 bytes to be moved from memory to any
register type (and vice versa), as well as from any register type to any
register type. Thus, for example, a double register can be moved to 4
contiguous word registers. In version 1.00 this could only be done by
storing the double register into memory, and then moving it in pieces to
word registers, using 4 move word instructions. -- All the addressing
modes of the qr format are available in the mr format except for immediate
operands.

The b14 and n04 are simple extensions of the b1 and n0 formats, used by
the new instructions entersav, leaveres, pushregs, and popregs.

173

 APPENDIX D: Differences Between VMAX v1.00 and v2.00 (continued)

Instruction Set Summary by Function (NEW)

This section describes groups of instructions by the functions they per-
form. Several subsections contain important information not found else-
where, e.g., the subsections on divide, convert, and compare instructions.

Appendices D, E, and F (NEW)

These appendices include the one you are now reading, a discussion of
possible future directions for VMAX, and a set of diagrams for all the
instruction formats.

Instruction Descriptions

The opcode mnemonics for the following instructions have been changed:

 new name instruction old name
 --
 cmplb Compare loworder byte of long to byte cmpbl
 cmpwb Compare loworder byte of word to byte cmpbw

 cvtsld Convert signed long to double cvtld
 cvttdsl Convert truncated double to signed long cvtdl

 divrsl Divide with rem signed long divsl
 divrsw Divide with rem signed word divsw
 divrul Divide with rem unsigned long divul
 divruw Divide with rem unsigned word divuw

 stolb Store loworder byte of long into byte stobl
 stolw Store loworder word of long into word stowl
 stowb Store loworder byte of word into byte stobw

174

 APPENDIX D: Differences Between VMAX v1.00 and v2.00 (continued)

The following instructions are new:

 new name instruction
 --
 addcl Add long with carry
 addswl Add signed word to long
 adduwl Add unsigned word to long

 cvtslf Convert signed long to float
 cvttdul Convert truncated double to unsigned long
 cvttfsl Convert truncated float to signed long
 cvttful Convert truncated float to unsigned long
 cvtuld Convert unsigned long to double
 cvtulf Convert unsigned long to float

 divrslw Divide with rem signed long by word
 divrulw Divide with rem unsigned long by word
 divsl Divide signed long
 divsw Divide signed word
 divul Divide unsigned long
 divuw Divide unsigned word

 entersav Enter function and save registers

 gmov General move
 gsto General store

 leal Load effective address into long register

 leaveres Leave function and restore registers

 movflags Move word to flags register

 mulswl Multiply signed words yielding long
 muluwl Multiply unsigned words yielding long

 popregs Pop multiple registers
 pushregs Push multiple registers

 remsl Remainder signed long
 remsw Remainder signed word
 remul Remainder unsigned long
 remuw Remainder unsigned word

 stoflags Store flags register into word

 subcl Subtract long with carry
 subswl Subtract signed word from long
 subuwl Subtract unsigned word from long

175

 APPENDIX D: Differences Between VMAX v1.00 and v2.00 (continued)

The following paragraphs briefly discuss the rationale behind these new
instructions:

 addcl and subcl instructions allow for multiple-precision
 arithmetic.

 addswl, adduwl, divrslw, divrulw, mulswl, muluwl, subswl,
 and subuwl allow arithmetic on operands of different sizes,
 namely words and longs.

 cvtslf, and the the other new conversion instructions make
 it possible to convert floating to unsigned integers as
 well as to signed integers. Also, these new conversions
 operations have been carefully chosen to satisfy all of
 GCC's requirements.

 divsl, and other new division and remainder instructions
 separate the calculation of quotients and remainders, so
 just the one desired in a given instance need be computed.
 This also conforms to what GCC wants.

 entersav and leaveres make it possible to code C function
 prologues and epilogues with fewer bytes.

 gmov and gsto allow greater freedom of data movement when
 data type is not a consideration. Also, these instructions
 are more or less required by GCC.

 leal allows address calculations to be shorter and faster.

 movflags and stoflags allow the flags register to be read,
 changed, and written in a reasonable easy manner.

 popregs and pushregs allow any number of registers to be
 saved and restored with a single instruction.

176

 APPENDIX E: Ideas and Notes for Future Versions

Ultimately we will probably want two versions of the VMAX interpreter, one
which runs as fast as possible, and one which does as much error checking
as possible. The latter version should include stack checking, as discus-
sed in the next section.

Stack Checking

A nagging problem with hardware stacks on machines like the 8086 is that
there is no hardware checking of stack overflow or underflow. This can be
especially irksome when the heap and the stack compete for memory: When
one grows into the other the results are usually disasterous.

Thus, we define two new VMAX registers, spmin and spmax. These are 32-bit
registers containing unsigned long values which define the extent of the
stack. Each time sp is changed (either explicitly or implicitly via push,
pop, call, ret, etc.), this check is made:

 spmin <= sp <= spmax

If sp is out of bounds, a trap occurs. (Exactly what it means for a trap
to occur on VMAX will not be dealt with at this time.)

The following new qo-format instructions are used to operate on spmin and
spmax:

 movspmin lv Move q-operand to spmin
 movspmax lv Move q-operand to spmax
 stospmin la Store spmin in q-operand
 stospmax la Store spmax in q-operand

Note that movspmin, movspmax, stospmin, and stospmax do no checking at
all. These instructions simply move values into and out of spmin and
spmax. All checking is done when sp changes or is operated on.

[Are stospmin and stospmax really needed?]

To illustrate how these instructions are used, consider the following mem-
ory map for a compiled C program:

177

 APPENDIX E: Ideas and Notes for Future Versions (continued)

 Address
 +-----------------------------+
 0 -------> | |
 | |
 | |
 | Code Space |
 | |
 | |
 | |
 +-----------------------------+
 | |
 | Data Space (C globals) |
 | |
 +-----------------------------+
 FSTFREE -> | Heap |
 | | |
 | | |
 | v |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | ^ |
 | | |
 | | |
 | Stack |
 +-----------------------------+
 MEMSIZE ->

Before the loader transfers control to the loaded program, it executes
these instructions:

 movspmin FSTFREE ; spmin = FSTFREE
 movspmax MEMSIZE-4 ; spmax = MEMSIZE-4
 movl MEMSIZE-4, sp ; sp = MEMSIZE-4

Thus, as the program executes, sp is guaranteed to always lie in the in-
terval [FSTFREE, MEMSIZE-4].

Whenever a malloc call needs to increase the size of the heap, the follow-
ing code is executed, where HeapTop is the address of the first free byte
after the top of the heap, and NewHeapTop is the new value we wish to as-
sign to HeapTop:

178

 APPENDIX E: Ideas and Notes for Future Versions (continued)

 if (NewHeapTop < sp)
 spmin = HeapTop = NewHeapTop;
 else
 out of memory (or need to garbage collect)

Thus, spmin always contains the address of the top of the heap, so that
the stack cannot overflow into the heap without a trap. (The variable
HeapTop is not really needed since its value is always equal to the con-
tents of the spmin register.)

In some instances strict stack checking can get in the way, so we have a
new instruction to turn stack checking on and off:

 stkchk 0/1 Turn stack checking on or off

This is a b1-format instruction whose operand is either 0 (off) or 1 (on).

[NOTE: Perhaps there should be a bit in the flags register which tells if
stack checking is on or off? If so, then we probably don't want a stkchk
instruction, because stoflags and movflags can be used to turn the bit on
or off.]

Summary of Stack Checking Instructions

 format opcode operands instruction
 --

 qo movspmin lv Move address to spmin register
 qo movspmax lv Move address to spmax register

 qo stospmin la Store spmin register
 qo stospmax la Store spmax register

 b1 stkchk 0/1 Turn stack checking off/on

179

 APPENDIX E: Ideas and Notes for Future Versions (continued)

Loose Ends

Following is a list of loose ends:

 1. At present, numeric values have not been assigned to
 VMAX opcodes. This can be done at anytime; it is a
 question of what works best for the VMAX interpreter.

 2. No instructions have been defined for I/O, in parti-
 cular for communication with the host PC. This is an
 important area which will be dealt with later.

 3. Thought needs to be given to how a C program running
 on the PCMAX2 accesses XMEM, the extended memory available
 to both the PC and PCMAX2.

 4. The effect of each instruction on the flags register
 is not yet defined and documented in the instruction de-
 scriptions. At present only compare instructions change
 the flags register, but (as discussed elsewhere in this
 document), at some point we need to decide what to do
 about arithmetic overflow.

180

 APPENDIX F: Diagrams of Instruction Formats

 Overview of Formats

qr format (2, 4, 6, 8, or 10 bytes)

 8 5 3
 +----------------+----------------+
 | | | |
 | opcode | q | rreg | [0, 2, 4, 6, or 8 bytes for q]
 | | | |
 +----------------+----------------+

qc format (2, 4, 6, 8, or 10 bytes)

 8 5 3
 +----------------+----------------+
 | | | |
 | opcode | q | cond | [0, 2, 4, 6, or 8 bytes for q]
 | | | |
 +----------------+----------------+

qo format (2, 4, 6, 8, or 10 bytes)

 8 5 3
 +----------------+----------------+
 | | | |
 | opcode | q | 000 | [0, 2, 4, 6, or 8 bytes for q]
 | | | |
 +----------------+----------------+

mr format (4, 6, or 8 bytes)

 8 3 5
 +----------------+----------------+
 | | | |
 | opcode | m | rreg | [2, 4, or 6 bytes for m]
 | | | |
 +----------------+----------------+

181

 APPENDIX F: Diagrams of Instruction Formats (continued)

 Overview of Formats (continued)

ir format (2 bytes)

 8 5 3
 +----------------+----------------+
 | | | |
 | opcode | integer | rreg |
 | | | |
 +----------------+----------------+

ij format (2, 4, or 6 bytes)

 8 4 4
 +----------------+-----------------+
 | | | |
 | opcode | cond | j | [0, 2, or 4 bytes for j]
 | | | |
 +----------------+-----------------+

a3 format (4 bytes)

 8 24
 +----------------+--------------------------------+
 | | |
 | opcode | 3-byte offset |
 | | |
 +----------------+--------------------------------+

b14 format (6 bytes)

 8 8 32
 +----------------+----------------+-------------------------------+
 | | | |
 | opcode | 1-byte integer | 4-byte operand |
 | | | |
 +----------------+----------------+-------------------------------+

182

 APPENDIX F: Diagrams of Instruction Formats (continued)

 Overview of Formats (continued)

b1 format (2 bytes)

 8 8
 +----------------+----------------+
 | | |
 | opcode | 1-byte integer |
 | | |
 +----------------+----------------+

n04 format (6 bytes)

 8 8 32
 +----------------+----------------+-------------------------------+
 | | | |
 | opcode | 00000000 | 4-byte operand |
 | | | |
 +----------------+----------------+-------------------------------+

n0 format (2 bytes)

 8 8
 +----------------+----------------+
 | | |
 | opcode | 00000000 |
 | | |
 +----------------+----------------+

183

 APPENDIX F: Diagrams of Instruction Formats (continued)

 The qr Format: Basic q-Operands

reg (2 bytes)

 8 5 3
 +--------+--------------+
 | | | |
 | opcode | qreg | rreg |
 | | | |
 +--------+--------------+

b (2 bytes)

 8 5 3
 +--------+--------------+
 | | | |
 | opcode | breg | rreg |
 | | | |
 +--------+--------------+

bd2 (4 bytes)

 8 5 3 16
 +--------+--------------+-----------------+
 | | | | |
 | opcode | breg | rreg | 2-byte disp |
 | | | | |
 +--------+--------------+-----------------+

mema (6 bytes)

 8 5 3 32
 +--------+--------------+--------------------------------+
 | | | | |
 | opcode | mema | rreg | 4-byte memory address |
 | | | | |
 +--------+--------------+--------------------------------+

184

 APPENDIX F: Diagrams of Instruction Formats (continued)

 The qr Format: Immediate q-Operands

imm_1, imm0, imm1 (2 bytes)

 8 5 3
 +--------+--------------+
 | | imm_1 | |
 | opcode | imm0 | rreg |
 | | imm1 | |
 +--------+--------------+

immv byte (4 bytes)

 8 5 3 8 8
 +--------+--------------+-----------------+
 | | | | | |
 | opcode | immv | rreg | byte |00000000|
 | | | | | |
 +--------+--------------+-----------------+

immv word (4 bytes)

 8 5 3 16
 +--------+--------------+-----------------+
 | | | | |
 | opcode | immv | rreg | 2-byte word val.|
 | | | | |
 +--------+--------------+-----------------+

immv long (6 bytes)

 8 5 3 32
 +--------+--------------+--------------------------------+
 | | | | |
 | opcode | immv | rreg | 4-byte long value |
 | | | | |
 +--------+--------------+--------------------------------+

185

 APPENDIX F: Diagrams of Instruction Formats (continued)

 The qr Format: Immediate q-Operands (continued)

imm2 long (4 bytes)

 8 5 3 16
 +--------+--------------+-----------------+
 | | | | |
 | opcode | imm2 | rreg | 2-byte long val.|
 | | | | |
 +--------+--------------+-----------------+

immv float (6 bytes)

 8 5 3 32
 +--------+--------------+--------------------------------+
 | | | | |
 | opcode | immv | rreg | 4-byte float value |
 | | | | |
 +--------+--------------+--------------------------------+

immv double (10 bytes)

 8 5 3 64
 +--------+--------------+--+
 | | | | |
 | opcode | immv | rreg | 8-byte double value |
 | | | | |
 +--------+--------------+--+

186

 APPENDIX F: Diagrams of Instruction Formats (continued)

 The qr Format: Indexed q-Operands

i (4 bytes)

 8 5 3 3 2 3 8
 +--------+--------------+---------------+--------+
 | | | | | | | |
 | opcode | 11111 | rreg | i |s| ireg |00000000|
 | | | | | | | |
 +--------+--------------+---------------+--------+

id1 (4 bytes)

 8 5 3 3 2 3 8
 +--------+--------------+---------------+--------+
 | | | | | | | |
 | opcode | 11111 | rreg | id1 |s| ireg | 1-byte |
 | | | | | | | disp. |
 +--------+--------------+---------------+--------+

id3 (6 bytes)

 8 5 3 3 2 3 24
 +--------+--------------+---------------+--------------+
 | | | | | | | |
 | opcode | 11111 | rreg | id3 |s| ireg | 3-byte disp. |
 | | | | | | | |
 +--------+--------------+---------------+--------------+

id4 (8 bytes)

 8 5 3 3 2 3 8 32
 +--------+--------------+---------------+--------+----------------+
 | | | | | | | | |
 | opcode | 11111 | rreg | id4 |s| ireg |00000000| 4-byte disp. |
 | | | | | | | | |
 +--------+--------------+---------------+--------+----------------+

187

 APPENDIX F: Diagrams of Instruction Formats (continued)

 The qr Format: Based q-Operands

b (4 bytes)

 8 5 3 4 1 3 8
 +--------+--------------+---------------+--------+
 | | | | | | | |
 | opcode | 11111 | rreg | b |0| breg |00000000|
 | | | | | | | |
 +--------+--------------+---------------+--------+

bd1 (4 bytes)

 8 5 3 4 1 3 8
 +--------+--------------+---------------+--------+
 | | | | | | | |
 | opcode | 11111 | rreg | bd1 |0| breg | 1-byte |
 | | | | | | | disp. |
 +--------+--------------+---------------+--------+

bd3 (6 bytes)

 8 5 3 4 1 3 24
 +--------+--------------+---------------+--------------+
 | | | | | | | |
 | opcode | 11111 | rreg | bd3 |0| breg | 3-byte disp. |
 | | | | | | | |
 +--------+--------------+---------------+--------------+

bd4 (8 bytes)

 8 5 3 4 1 3 8 32
 +--------+--------------+---------------+--------+----------------+
 | | | | | | | | |
 | opcode | 11111 | rreg | bd4 |0| breg |00000000| 4-byte disp. |
 | | | | | | | | |
 +--------+--------------+---------------+--------+----------------+

188

 APPENDIX F: Diagrams of Instruction Formats (continued)

 The qr Format: Based-Indexed q-Operands

bi (4 bytes)

 8 5 3 4 1 3 3 2 3
 +--------+--------------+-----------+----------+
 | | | | | | | | | |
 | opcode | 11111 | rreg | bi |0|breg|000|s|ireg|
 | | | | | | | | | |
 +--------+--------------+-----------+----------+

bid2 (6 bytes)

 8 5 3 4 1 3 3 2 3 16
 +--------+--------------+-----------+----------+--------------+
 | | | | | | | | | | |
 | opcode | 11111 | rreg |bid2|0|breg|000|s|ireg| 2-byte disp. |
 | | | | | | | | | | |
 +--------+--------------+-----------+----------+--------------+

bid4 (8 bytes)

 8 5 3 4 1 3 3 2 3 32
 +--------+--------------+-----------+----------+------------------+
 | | | | | | | | | | |
 | opcode | 11111 | rreg |bid4|0|breg|000|s|ireg| 4-byte disp. |
 | | | | | | | | | | |
 +--------+--------------+-----------+----------+------------------+

189

 APPENDIX F: Diagrams of Instruction Formats (continued)

 The mr Format

mmema (6 bytes)

 8 1 2 5 32
 +--------+--------------+--------------------------------+
 | | | | | |
 | opcode |0| n | rreg | 4-byte memory address |
 | | | | | |
 +--------+--------------+--------------------------------+

mreg (4 bytes)

 8 1 2 5 4 4 3 5
 +--------+--------------+-----------+------------+
 | | | | | | | | |
 | opcode |1| n | rreg |mreg| 0000 |000| mreg |
 | | | | | | | | |
 +--------+--------------+-----------+------------+

i, b, bi (4, 6, or 8 bytes)

 8 1 2 5
 +--------+--------------+
 | | | | |
 | opcode |1| n | rreg | [2, 4, or 6 bytes for m]
 | | | | |
 +--------+--------------+

The m-operand of an mr instruction can be specified using any of the in-
dexed, based, or based-indexed addressing modes used to specify q-
operands.

190

 APPENDIX F: Diagrams of Instruction Formats (continued)

 The ij Format

jregi (2 bytes)

 8 4 4
 +--------+---------------+
 | | | |
 | opcode | cond | Lreg |
 | | | |
 +--------+---------------+

pcrp (4 bytes)

 8 4 4 16
 +--------+---------------+-----------------+
 | | | | |
 | opcode | cond | pcrp | 2-byte offset |
 | | | | |
 +--------+---------------+-----------------+

pcrm (4 bytes)

 8 4 4 16
 +--------+---------------+-----------------+
 | | | | |
 | opcode | cond | pcrm | 2-byte offset |
 | | | | |
 +--------+---------------+-----------------+

jmema (6 bytes)

 8 4 4 32
 +--------+---------------+--------------------------------+
 | | | | |
 | opcode | cond | jmema | 4-byte memory address |
 | | | | |
 +--------+---------------+--------------------------------+

191

 APPENDIX F: Diagrams of Instruction Formats (continued)

 The ij Format (continued)

jmemai (6 bytes)

 8 4 4 32
 +--------+---------------+--------------------------------+
 | | | | |
 | opcode | cond |jmemai | 4-byte memory address |
 | | | | |
 +--------+---------------+--------------------------------+

sprmi (4 bytes)

 8 4 4 16
 +--------+---------------+-----------------+
 | | | | |
 | opcode | cond | sprmi | 2-byte offset |
 | | | | |
 +--------+---------------+-----------------+

192

 <END DOCUMENT>

193

